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Abstract

Meta learning aims at learning a model that
can quickly adapt to unseen tasks. Widely
used meta learning methods include model-
agnostic meta learning (MAML), implicit
MAML, Bayesian MAML. Thanks to its abil-
ity of modeling uncertainty, Bayesian MAML
often has advantageous empirical performance.
However, the theoretical understanding of
Bayesian MAML is still limited, especially
on questions such as if and when Bayesian
MAML has provably better performance than
MAML. In this paper, we aim to provide the-
oretical justifications for Bayesian MAML’s
advantageous performance by comparing the
meta test risks of MAML and Bayesian
MAML. In the meta linear regression, un-
der both the data agnostic and linear cen-
troid cases, we have established that Bayesian
MAML indeed has provably lower meta test
risks than MAML. We verify our theoretical
results through empirical experiments.

1 INTRODUCTION

Meta learning, also referred to as “learning to learn”,
usually learns a model that can quickly adapt to new
tasks (Thrun and Pratt, 1998; Hospedales et al., 2020;
Vilalta and Drissi, 2002; Vanschoren, 2018; Bengio
et al., 1991; Schmidhuber, 1995; Hochreiter et al., 2001).
The key idea of meta-learning is to learn a “prior”
model from multiple existing tasks with a hope that
the learned model is able to quickly adapt to unseen
tasks. Meta learning has been used in various machine
learning scenarios including few-shot learning (Snell
et al., 2017; Obamuyide and Vlachos, 2019), contin-
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Figure 1: MAML (left) and Bayesian MAML (right).

ual learning (Harrison et al., 2020; Javed and White,
2019), and personalized learning (Madotto et al., 2019).
In addition, meta learning has also been successfully
implemented in different data limited applications in-
cluding language and vision tasks (Achille et al., 2019;
Li et al., 2018; Hsu et al., 2018; Liu et al., 2019; Zint-
graf et al., 2019; Wang et al., 2019; Obamuyide and
Vlachos, 2019). One of the popular meta-learning ap-
proaches is the model agnostic meta-learning (MAML)
method (Finn et al., 2017; Vuorio et al., 2019; Yin et al.,
2020; Obamuyide and Vlachos, 2019), which learns an
initial model that can adapt to new tasks using one
step gradient update. Despite its success, MAML still
suffers from overfitting when it is trained with few data,
which motivates Bayesian MAML (BaMAML) (Grant
et al., 2018; Ravi and Beatson, 2019; Yoon et al., 2018).
Instead of point estimation of task specific model pa-
rameters, as in MAML and its variants (Rajeswaran
et al., 2019), BaMAML obtains a posterior distribution
of task specific parameters as a function of the task
data and the initial model parameters, as illustrated in
Figure 1. For example, in 5-way 1-shot classification
on TieredImageNet, BaMAML has 35.2% performance
gain over MAML in terms of accuracy (Nguyen et al.,
2020). In spite of BaMAML’s impressive empirical
performance, its theoretical understanding is still very
limited, no need to mention a sound justification for
its performance gain over MAML. In this context, this
paper aims to answer the following question:

Is Bayesian Model-Agnostic Meta Learning Better than
Model-Agnostic Meta Learning, Provably?

In an attempt to provide an affirmative answer to this
question, our paper analyzes the meta-test risks of one-
step MAML and BaMAML to make a fair comparison



Is Bayesian Model-Agnostic Meta Learning Better than Model-Agnostic Meta Learning, Provably?

between them. In a high level, our theoretical results
suggest that compared to one-step MAML, BaMAML
1) harnesses flexibility in the trade-off between prior
and likelihood based on their quality to improve model
adaptation capacity; and, 2) leverages the posterior
distribution instead of a point estimation in inference,
which allows model averaging to reduce variance.

1.1 Related Works

To put our work in context, we review prior art that is
grouped into the following categories.

Meta-learning. Early works of meta learning build
black-box recurrent models that can make predictions
based on few examples from new tasks (Schmidhuber,
1993; Hochreiter et al., 2001; Andrychowicz et al., 2016;
Chen et al., 2017), or learn shared feature representa-
tion among multiple tasks (Snell et al., 2017; Vinyals
et al., 2016). More recently, some methods have been
developed to find the initialization of model param-
eters that can quickly adapt to new tasks with few
optimization steps (Finn et al., 2017; Nichol et al.,
2018; Rothfuss et al., 2018). The empirical success of
meta learning has also stimulated recent interests on
building the theoretical foundation of these methods.

Theory of meta-learning. One line of theoretical
works study the convergence of meta-learning algo-
rithms under different settings. These works include
analysis of the regret bound for an online meta-learning
algorithm (Finn et al., 2019), the convergence and sam-
ple complexity of gradient based MAML (Fallah et al.,
2020), sufficient conditions for its convergence to the
exact solution for an approximate bilevel optimization
method (Franceschi et al., 2018), sample complexity for
a bilevel formulation for meta-learning, named implicit
MAML (iMAML) (Rajeswaran et al., 2019), and the
global convergence guarantee of MAML with overpa-
rameterized deep neural nets (DNNs) (Wang et al.,
2020a,b).

Another line of works analyze the generalization er-
ror bound of meta learning methods under different
settings based on their optimization trajectory. For
instance, meta-learning in the linear centroid model for
ridge regression (Denevi et al., 2018), MAML with suffi-
ciently wide DNNs (Wang et al., 2020a), meta-learning
in online convex optimization (Balcan et al., 2019), and
MAML for strongly convex objective functions on re-
curring and unseen tasks (Fallah et al., 2021). Recently,
information theoretical generalization error bounds of
meta learning are also proposed by Jose and Simeone
(2021); Rezazadeh et al. (2021); Jose et al. (2021); Chen
et al. (2021), which bounds the meta learning general-
ization error in terms of mutual information between
the input meta-training data and the output of the

meta-learning algorithms rather than gradient norm of
the algorithms during optimization.

Our work is also inspired by several pioneering works
that analyze the optimization, modeling and statistical
errors of meta-learning methods. Gao et al. (2020)
study the modeling and optimization error trade-off
in MAML and compare the trade-off with that of em-
pirical risk minimization (ERM). Collins et al. (2020)
further analyze the effect of different factors on the
optimal population risk, such as task hardness in task
landscape. Bai et al. (2021) study how the dataset
split between the training and validation affects the
performance of iMAML under a noiseless realizable
centroid model. But none of them tackle the meta-test
risk of BaMAML. Furthermore, from the technical as-
pect, compared to Bai et al. (2021), our analysis does
not require strong assumption on noiseless realizable
model; compared to Gao and Sener (2020), our analysis
provides a sharper characterization of statistical error
bound in the high-dimensional asymptotic case.

Bayesian model agnostic meta-learning. From a
hierarchical probabilistic modeling perspective, learn-
ing the initialization in MAML is tantamount to learn-
ing the prior distribution of model parameters shared
across different tasks (Grant et al., 2018), which leads to
a hierarchical Bayes formulation that we call BaMAML
thereafter. Empirically, they have better performance
in few-shot meta learning settings and tend to reduce
over-fitting in the data-limited regimes. Several vari-
ants of BaMAML have been proposed based on different
Bayesian inference methods (Grant et al., 2018; Finn
et al., 2018; Yoon et al., 2018; Gordon et al., 2018;
Nguyen et al., 2020). Despite the superior empirical
performance of BaMAML methods compared to non-
Bayesian ones, very few works study their theory. A
related line of works extend the PAC-Bayes framework
to meta learning (Amit and Meir, 2018; Rothfuss et al.,
2021; Ding et al., 2021; Farid and Majumdar, 2021), to
provide a PAC-Bayes meta-test error bound. Different
from the PAC-Bayes framework that bounds the Gibbs
risk, we bound the Bayes risk (Sheth and Khardon,
2017). While these works provide the meta-test error
bound for BaMAML, exactly when BaMAML is prov-
ably better than non-Bayesian methods are not fully
understood. Different from these works, we explicitly
compare MAML and BaMAML in terms of meta-test
error, consisting of the optimal population risks and
statistical errors.

1.2 Our Contributions

The goal of this paper is to provide justification on the
observed empirical performance gain of BaMAML over
MAML. Our contributions are summarized below.
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C1) Under the meta-linear regression setting, we de-
compose the meta-test risk into population risk
and statistical error terms, which capture the bias
and variance of the estimated parameter, respec-
tively. We prove that BaMAML with proper choice
of hyperparameters has smaller optimal population
risk and dominating constant in statistical error
than MAML, therefore smaller meta-test risk.

C2) With additional linear centroid model assumption
for task data distribution, we prove that BaMAML
has strictly smaller dominating constant in statis-
tical error than MAML in the high dimensional
asymptotic case.

C3) We conduct simulations on meta linear regres-
sion to verify our theory. And we also perform
experiments beyond linear case, where similar con-
clusions can be drawn.

Our theoretical analysis justifies BaMAML for reducing
the optimal population risk and statistical errors, thus
the meta-test risk. And to our best knowledge, we
are the first to make a comparison between MAML
and BaMAML, which is complementary to existing
works (Gao and Sener, 2020; Collins et al., 2020) that
compare MAML against empirical risk minimization.

2 PROBLEM DEFINITION AND
SOLUTIONS

In this section, we first introduce the general meta-
learning setting and the formulations of two meta learn-
ing methods, MAML and BaMAML. Then we focus on
meta-linear regression, where solutions to the empirical
and population level risks are obtained in closed form.

2.1 Problem Setup

In our meta-learning setting, assume task τ are drawn
from a task distribution, i.e. τ ∼ T , with input features
xτ ∈ Xτ ⊂ Rd and target labels yτ ∈ Yτ ⊂ R. For
each task τ , we observe N samples drawn i.i.d. from
Pτ in the dataset Dτ = {(xτ,n, yτ,n)}Nn=1, and Dτ is
divided into the train and validation datasets, denoted
as Dtrn

τ and Dval
τ , respectively. Here |Dtrn

τ | = N1 and
|Dval
τ | = N2 with N = N1 +N2. Given the data Dτ , we

use the empirical loss `τ (hτ ,Dτ ) of per-task hypothesis
hτ ∈ Hτ as a measure of the performance.

And the goal for initialization based meta learning
methods, such as MAML (Finn et al., 2018) and Ba-
MAML (Yoon et al., 2018), is to learn an initial pa-
rameter θ0 ∈ Θ0, which, with an adaptation method
and the training data, can produce a per-task hy-
pothesis hτ that performs well on the validation data

for task τ . Formally, for a meta-learning method,
A : Θ0 × (Xτ × Yτ )N1 → Hτ , represents the adap-
tation method or base-learner. Given T tasks with
corresponding data, our meta-learning objective is to
find θ0 that minimizes the empirical loss, given by

LA(θ0,D) :=
1

T

T∑
τ=1

`τ (A(θ0,Dtrn
τ ),Dval

τ ). (1)

And the corresponding meta-test risk is defined as the
expectation of the per-task loss `τ over the task and
data distribution, given by

RA(θ0) := Eτ
[
EDτ

[
`τ (A(θ0,Dtrn

τ ),Dval
τ )
]]
. (2)

Denote Xall
τ := [xτ,1, . . . ,xτ,N ]> ∈ RN×d, yall

τ :=
[yτ,1, . . . , yτ,N ]> ∈ RN for ease of discussion, where “all”
can also be “trn” for training and “val” for validation
with N1 and N2 data points, respectively. Throughout
the discussion of this paper, we adopt a probabilistic
perspective (Grant et al., 2018; Finn et al., 2018), with
`τ defined as the negative log likelihood, given by

`τ (A(θ0,Dtrn
τ ),Dval

τ )=− 1

N2
log p(yval

τ |Xval
τ ,θ0,Dtrn

τ )

=− 1

N2
log

∫
p(yval

τ | Xval
τ ,θτ )pA(θτ | θ0,Dtrn

τ )dθτ (3)

where pA(θτ | θ0,Dtrn
τ ) is the posterior distribu-

tion induced by A. And the likelihood p(yval
τ |

Xval
τ ,θτ ,Dtrn

τ ) =
∏N2

n=1 p(yτ,n | xτ,n,θτ ). Note that,
for a point estimate method A, such as MAML, the
posterior distribution pA(θτ | θ0,Dtrn

τ ) reduces to a
Dirac delta function δ(θτ−θ̂Aτ ). And A specifies a map-
ping from the initial parameter θ0 to the task-specific
parameter θ̂Aτ (θ0,Dtrn

τ ).

In the meta training stage, we obtain θ̂A0 by minimiz-
ing (1) under each meta learning method A. And in
the meta testing stage, we evaluate the test error of
θ̂A0 on (2) for different methods.

Methods. We proceed to introduce the general
formulations of MAML and BaMAML. Considering
MAML with one step gradient update as the baseline
method for meta-learning (Finn et al., 2017), the task-
specific parameter θ̂ma

τ (θ0) is obtained from the initial
parameter θ0 by taking one step gradient descent with
step size α of the per-task loss function `τ . Combined
with the empirical loss defined in (1), we have

the empirical loss of MAML is given by

Lma(θ0,D) =
1

T

T∑
τ=1

`τ (θ̂ma
τ (θ0,Dtrn

τ ),Dval
τ ) (4)

s.t. θ̂ma
τ (θ0,Dtrn

τ ) = θ0 −
α

2
∇θ0

`τ (θ0,Dtrn
τ ).



Is Bayesian Model-Agnostic Meta Learning Better than Model-Agnostic Meta Learning, Provably?

BaMAML obtains an approximation of the posterior
distribution p(θτ | Dtrn

τ ,θ0) instead of a point estimate
θ̂Aτ (θ0,Dtrn

τ ). In general, the true posterior distribu-
tion can be difficult to compute exactly. Alternatively,
the approximate distribution p̂(θτ | Dtrn

τ ,θ0) can be
obtained via variational inference (Nguyen et al., 2020),
Markov chain Monte-Carlo sampling or Laplace ap-
proximation (Grant et al., 2018). Here we adopt the
variational inference formulation, by minimizing the
divergence between the approximate and the true poste-
rior distribution. Define DKL(·‖·) as the KL-divergence
between two distributions, we have

the empirical loss of BaMAML is given by

Lba(θ0,D) =
1

T

T∑
τ=1

`τ (p̂(θτ | Dtrn
τ ,θ0),Dval

τ ) (5)

s.t. p̂(θτ |Dtrn
τ ,θ0)=argmin

q(θτ )∈Q
DKL

(
q(θτ )‖p(θτ |Dtrn

τ ,θ0)
)

It is worth mentioning that BaMAML formulation in
this paper contains iMAML, or iMAML (Rajeswaran
et al., 2019) as a special case. Therefore, results ob-
tained for BaMAML naturally implies the results for
iMAML with small difference. We point out this reduc-
tion in the next remark, and provide detailed discussion
in the appendix.

Remark 1 (Reduction to iMAML) When Q is
chosen to be the set of Dirac Delta functions and the
KL-divergence in (5) is replaced by the cross entropy,
then (5) reduces to

p̂(θτ | Dtrn
τ ,θ0) = δ(θτ − θ̂map

τ ), (6)

with θ̂map
τ = arg maxθτ p(θτ | D

trn
τ ,θ0).

2.2 Meta Linear Regression

Data model. Under the meta linear regression set-
ting, with the feature xτ ∈ Rd, the target yτ ∈ R, and
the ground truth parameter of task τ , θgt

τ ∈ Rd, we
assume the data generation model for task τ is

yτ = θgt>
τ xτ+ετ ,with ετ

iid∼ N
(
0, σ2

τ

)
,Qτ := E[xτx

>
τ ].
(7)

Given the estimate of θgt
τ denoted as θ̂Aτ , then the

conditional probability p(yτ | xτ , θ̂Aτ ) = N (θ̂A>τ xτ , σ
2
τ ).

Thus, ignoring the constant, the negative log likelihood
in (3), − log p(yval

τ | Xval
τ ,θτ ), becomes the squared

error ‖yval
τ −Xval

τ θτ‖2. Note that στ depends on task
τ generally, but does not add to challenges in analysis,
therefore we assume στ = 1 in this paper for simplicity.

By plugging θ̂Aτ into (2), and with the squared error
as the meta-linear regression loss, the empirical loss,

meta-test risk along with their optimal solutions can be
computed analytically with closed-form, whose deriva-
tions are deferred to the appendix. We summarize the
results for different methods in Proposition 1, where
the optimal solutions for MAML derived in previous
work (Gao and Sener, 2020) are also included.

Proposition 1 (Empirical and population level
solutions) Under data model (7), the meta-test risk
of method A can be computed by

RA(θ0) = Eτ
[
‖θ0 − θgt

τ ‖2WA
τ

]
+ 1. (8)

The optimal solutions to the meta-test risk and empiri-
cal loss are given below respectively

θA0 :=arg min
θ0

RA(θ0)=Eτ
[
WA

τ

]−1Eτ
[
WA

τ θ
gt
τ

]
(9a)

θ̂A0 := arg min
θ0

LA(θ0,D)

=
( T∑
τ=1

ŴA
τ

)−1( T∑
τ=1

ŴA
τ θ

gt
τ

)
+ ∆AT . (9b)

where the error term ∆AT is a polynomial function of
T,N, d caused by the noise ε, and specified in the ap-
pendix. And Q̂τ,N := 1

NXall>
τ Xall

τ . The weight matri-
ces of different methods, WA

τ and ŴA
τ , are given in

Table 1.

Note that, in the meta linear regression case in Propo-
sition 1, BaMAML further assumes the prior distri-
bution θτ ∼ N (θ0, 1/γb) with γb = γN1, resulting in
the weight matrices Wba

τ ,Ŵ
ba
τ in Table 1 depending

on γb. The posterior follows a Gaussian distribution,
p(θτ | Dtrn

τ ,θ0) = N (µθτ ,Σθτ ), where the parameters
Σθτ and µθτ are given by

Σθτ = (N1Q̂τ,N1 + γbI)−1, (10a)

µθτ = Σθτ (Xtrn>
τ ytrn

τ + γbθ0). (10b)

If p(θτ | Dtrn
τ ,θ0) ∈ Q, then p̂(θτ | Dtrn

τ ,θ0) = p(θτ |
Dtrn
τ ,θ0), which holds for the meta linear regression

case analyzed in this paper, with Q specified as the set
of Gaussian distributions.

Next, we will use the closed-form solutions of different
methods in Proposition 1 to compute their generaliza-
tion errors in Section 3.

3 META-TEST RISK ANALYSIS

In this section, we will compare the meta-test risk
of MAML and BaMAML. By the definition of the
meta-test risk RA in (2), it can be decomposed into
the optimal population risk and statistical errors, as
summarized in Proposition 2.
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Table 1: Weight matrices for the closed form solutions of method A.

Method Weight matrices
MAML (Gao and Sener, 2020) Wma

τ = (I− αQτ )Qτ (I− αQτ )

Ŵma
τ = (I− αQ̂τ,N1)Q̂τ,N2(I− αQ̂τ,N1)

BaMAML Wba
τ = ((sγ)−1Qτ + I)−1Qτ (γ−1Qτ + I)−1

Ŵba
τ = ((sγ)−1Q̂τ,N + I)−1Q̂τ,N2

(γ−1Q̂τ,N1
+ I)−1

Proposition 2 (Meta-test risk decomposition)
In meta-linear regression, the meta-test risk for
method A can be decomposed into optimal population
risks and statistical errors, given by

RA(θ̂A0 ) = RA(θA0 )

optimal
population risk

+ ‖θ̂A0 − θA0 ‖2Eτ [WA
τ ]

statistical error E2A(θ̂A0 )

. (11)

Invoking the definition of θA0 in (9a) as the optimal
solution for minθ0

RA(θ0), the optimal population risk
RA(θA0 ) is defined as the minimum meta-test risk,
which captures the error resulting from limited model
adaptation capacity. On the other hand, the statistical
error captures error resulting from using finite samples
instead of population statistics. We will next show that
both errors are smaller under BaMAML than those
under MAML in Sections 3.1 and 3.2.

3.1 Optimal Population Risk Analysis

We first analyze and compare the optimal population
risk of different methods. Before proceeding to the
theoretical results, we make the following basic as-
sumptions.

Assumption 1 (Bounded eigenvalues) For any τ ,
0 < λ ≤ λ(Qτ ) ≤ λ̄, where λ(Qτ ) represents the
eigenvalues of Qτ .

Assumption 2 (sub-gaussian task parameter
and features) The ground truth parameter θgt

τ is inde-
pendent of Xτ and satisfies that the individual entries{
θgt
τ,i − θA0,i

}
i∈[d],τ∈[T ]

are independent and O(R/
√
d)-

sub-gaussian. In addition, ‖E[θgt
τ − θA0 ]‖ ≤ M . The

entries of the inputs ‖xτ,i‖ ≤ K. R,K are constants.

Note that, these assumptions can be easily satisfied
in data generation model (7) by controlling the hyper-
parameters. And they are also standard in analyzing
the optimal population risks for meta-linear regres-
sion (Gao and Sener, 2020; Collins et al., 2020).

Next we will show in Theorem 2 that one can always
find a range of the regularizer weight γ such that
BaMAML has smaller optimal population risk than
MAML.

Theorem 2 (Optimal population risks) In the
meta-linear regression with data model (7), re-
call that θma

0 and θba
0 are the minimizers of

Rma(θ;α) and Rba(θ; γ), respectively. Define rma :=
minαR(θma

0 ;α)− 1 > 0, Cθ := max{
(
(M + ‖θim

0 ‖)2 +

R2
) 1

2 ,
(
(M+‖θma

0 ‖)2+R2
) 1

2 }. Under Assumptions 1-2,
when γ satisfies

0 < γ <
(
(rma)−

1
2Cθλ̄

1
2 − 1

)−1
λ (12)

BaMAML has smaller optimal population risk, i.e.

Rba(θba
0 ; γ) < min

α
Rma(θma

0 ;α). (13)

Theorem 2 states that regardless of the choice of α, we
can always find γ > 0 such that the BaMAML method
has smaller meta-test risk than the MAML method.

Note that, the choice of γ represents trade-off between
adaptation speed and optimal population risk, because
θba
τ (θ0) is a weighted average of the prior θ0 and the

ground truth paramter θgt
τ . The larger γ, the higher

weight for the prior θ0, then the closer the initial pa-
rameter θ0 is to the optimal θba

τ (θ0), and the faster
the adaptation speed. On the other hand, the larger
γ, the larger the optimal population risk is. This in-
spires us to select model hyperparameter based on our
practical needs for the specific problem. Combined
with the optimal population risk of ERM (or modeling
error in the paper) established in Gao and Sener (2020),
our Theorem 2 also implies that BaMAML has lower
optimal population risk than ERM.

3.2 Statistical Error Analysis

We next study and compare the statistical errors of
different methods defined in (11). We first bound the
statistical errors of MAML and BaMAML methods.

Theorem 3 (Statistical error of MAML) Suppose
Assumptions 1-2 hold. Assume M is close to zero,
which can be achieved when different tasks have similar
Qτ , for example, when input feature normalization is
performed. Denote ‖ · ‖op as the operator norm. Define
function

CA0 :=[inf
τ
λmin(WA

τ )]−1[sup
τ
λmax(WA

τ )]2 (14)
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and define % as a higher order term given by

% =
1

T

( 1√
N

+
(
1 +

d

N

)(
Õ(

1√
d

) + Õ(

√
d

T
)
))
. (15)

With probability at least 1− Td−10, we have

E2
ma(θ̂ma

0 ) ≤ R2

T
Cma

0 +
d

TN
Cma

1 + % (16)

where Cma
0 is given by (14), and

Cma
0 =(1− αλ)4(1− αλ̄)−2λ−1λ̄2

Cma
1 =s−1 + (1− s)−1(1− αλ̄)−2α2λ̄3λ−1. (17a)

Analogous to Theorem 3, we bound the BaMAML
statistical error next.

Theorem 4 (Statistical error of BaMAML) Sup-
pose Assumptions 1-2 hold. With probability at least
1− Td−10, we have

E2
ba(θ̂ba

0 ) ≤ R2

T
Cba

0 +
d

TN
Cba

1 + % (18)

where % is given by (15), Cba
0 is given by (14), and

Cba
0 =(1 + γ−1λ)−4(1 + (γs)−1λ̄)2λ−1λ̄2

Cba
1 =1. (19a)

Theorems 3 and 4 show that the statistical errors of
MAML and BaMAML have similar decreasing rates,
that is, O(T−1) and O(N−1). The difference lies in
their coefficients. For the dominating constants Cma

0

in (17a) and Cba
0 in (19a), given any α, choose

γ < min{λ̄, 1

2
λ̄−1λ2s(1− αλ̄)2(1− αλ)−1} (20)

then Cma
0 > Cba

0 . In terms of the dependence on N ,
given any α, since Cma

1 > s−1 > 1, thus Cma
1 > Cba

1 ,
i.e. MAML has larger coefficients than BaMAML.
Therefore the statistical error of BaMAML is lower
when N is small, which is typical in few-shot learning.
Nevertheless, Theorems 3 and 4 only give the worst-case
upper bounds of the statistical errors of two methods,
which can be inaccurate in some cases. To precisely
characterize the statistical errors of BaMAML and
MAML, we will provide sharper analysis next based
on an additional assumption.

3.3 Sharp Statistical Error Analysis

To precisely quantify the dominating constants in the
statistical error, we further make assumptions on the
task and data distributions.

Assumption 3 (Linear centroid model) 1) The
inputs are standard Gaussian: xτ,i

iid∼ N (0, Id). Then
Qτ = Id, therefore WA

τ = wAId. This implies that for
different methods, the optimal initial parameters are
the same, that is, θ∗0 = Eτ [θgt

τ ]. 2) The ground truth
parameter θgt

τ is independent of Xτ and satisfies

Eθgt
τ

[(
θgt
τ − θ∗0

)(
θgt
τ − θ∗0

)>]
=
R2

d
Id (21)

where R is a constant, and the individual entries {θgt
τ,i−

θ∗0,i}i∈[d],τ∈[T ] are i.i.d. mean-zero and O(R/
√
d)-sub-

gaussian.

Note that Assumption 3 has also been used in Bai
et al. (2021); Denevi et al. (2018), whereas we do not
make the noiseless realizable assumption compared
to Bai et al. (2021), thus less restrictive. Based on this
assumption, we can obtain the dominating constant
exactly, as stated in Theorems 5 and 6.

Theorem 5 (Statistical error of MAML) Suppose
Assumptions 1,3 hold, T = Ω(d), d/N = η > 0, and
α > 0. Define

wA :=
1

d
tr(E[WA

τ ]), C̃A0 :=
1

d

〈
E−2

[
ŴA

τ

]
,E
[
(ŴA

τ )2
]〉

With probability at least 1− Td−10, the statistical error
in (11) under MAML satisfies

E2
ma(θ̂ma

0 ) =
R2

T
wmaC̃

ma
0 +

d

TN
wmaC̃

ma
1 + % (22)

where % is given by (15). The dominating constant
C̃ma

0 satisfies

inf
α > 0

s ∈ (0, 1)

lim
d,N →∞
d/N → η

C̃ma
0 = 1 + η. (23)

Similarly, we can obtain the concentration of the sta-
tistical error of BaMAML.

Theorem 6 (Statistical error of BaMAML) Sup-
pose Assumptions 1,3 hold, T = Ω(d), d/N = η > 0,
and γ > 0. Then with probability at least 1 − Td−10,
the statistical error in (11) under BaMAML satisfies

E2
ba(θ̂ba

0 ) =
R2

T
wbaC̃

ba
0 +

d

TN
wbaC̃

ba
1 + % (24)

where % is given by (15). In addition, the dominating
constant C̃ba

0 satisfies

inf
γ > 0

s ∈ (0, 1)

lim
d,N →∞
d/N → η

C̃ba
0

{
= 1, η ∈ (0, 1],

≤ η, η ∈ (1,∞).
(25)
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Figure 2: Contour plots of the probability that the BaMAML estimate has lower expected loss than the MAML
estimate The axes are the log number of tasks (log10 T ) and the log number of data points (log10N) used for
meta-test optimization, and the values of α, γ are given in subfigure titles.

Theorems 5 and 6 state that when T, d are large and
T = Ω̃(d), the statistical errors of MAML and Ba-
MAML are dominated by R2/T times C̃ma

0 and C̃ba
0 ,

respectively. Therefore we can compare the statistical
errors of MAML and BaMAML based on the optimal
hyperparameters α, γ and split ratio s below.

Corollary 1 (Dominating constants in statistical
errors) The dominating constants in the statistical
errors of MAML and BaMAML satisfy

inf
α > 0

s ∈ (0, 1)

lim
d,N →∞
d/N → η

C̃ma
0 > inf

γ > 0
s ∈ (0, 1)

lim
d,N →∞
d/N → η

C̃ba
0 . (26)

Corollary 1 justifies the provable benefit of BaMAML in
terms of strictly smaller statistical error, contributing
to smaller meta-test risk. This is achieved in the high
dimension limit regime as d,N → ∞ and d/N → η,
which is common in the overparameterized case.

4 EXPERIMENTS

In this section, we present empirical experiments on
synthetic and real datasets to verify our theorems. For
synthetic datasets, we perform linear and sinusoidal
regression. For real datasets, we use miniImageNet.
By default, the experiments are repeated 5 times with
the average, best and worst performance displayed.
In our experiments, we also use ERM as a baseline
for comparison. In the meta learning setting, ERM
minimizes the average loss over all data, its meta-test
risk and optimal solutions can be obtained by tak-
ing α = 0, N1 = 0, N2 = N in that of MAML (Gao
and Sener, 2020). More results can be found in the
supplementary material.

4.1 Linear Regression

Experiment settings. For linear regression, we
generate synthetic data according to the following
task parameter V ∼ U(SO(d)),θτ ∼ U([0, 2]d), λτ ∼
U([0.1, 2]d),Qτ = Vdiag(λτ )V>,xτ ∼ N (0,Qτ ), and
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Figure 3: Optimal population risks R(θA0 ) v.s. α, γ,
and meta-test risks R(θ̂A0 ) v.s. train validation split
ratio s for ERM, MAML and BaMAML. In Figure 3b,
the lighter color bars represent the meta-test risks and
the darker color bars represent the statistical errors.

data model in (7), where SO(d) is the special orthogo-
nal group in dimension d.

Results. We present experiments for d = 1. To
compare the meta-test performance of MAML and Ba-
MAML, we present contour plots of probability that
BaMAML has lower loss than MAML in Figure 2,
where darker blue represents higher probability that
BaMAML is better than MAML, and darker green vice
versa. The results indicate that with sufficient adapta-
tion tasks or data, and proper choice of γ, BaMAML
performs better than MAML in terms of test error.

In Figure 3a, we report the meta-test risks (2) for
MAML and BaMAML under different hyperparame-
ters α, γ. Figure 3a shows that with proper choice of
hyperparameter γ, BaMAML can achieve lower meta-
test risk than MAML, verifying Theorem 1. Also, when
γ → 0, the meta-test risk of BaMAML approaches 1,
and when γ → ∞, the meta-test risk of BaMAML
approaches that of ERM. This further demonstrates
the trade-off between fast adaptation and optimal pop-
ulation risk (meta-test risk) that depends on γ. On
the other hand, MAML is relatively more sensitive to
the step size. Too large step size α can lead to very
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Figure 4: Statistical error v.s. N and T for ERM,
MAML and BaMAML. The dotted line serves as a
reference of the theoretical decay rate.

large meta-test risk of MAML, going beyond that of
ERM. Besides, we can see from the empirical optimal
solution that, contrary to non-Bayesian methods as an-
alyzed in Bai et al. (2021), BaMAML is robust against
different training and validation data split. This is
demonstrated in Figure 3b, where the meta-test risk of
BaMAML remains unchanged when s varies while that
of MAML is more sensitive to the change in s due to its
statistical error, verifying Theorems 3-6. Figure 3b also
demonstrates the decomposition of meta-test risk into
optimal population risk and statistical error, where the
meta-test risks are mainly dominated by the optimal
population risks in this case.

Next we fix α = 0.7, γ = 10−1, which are approxi-
mately optimal for each method. We vary number
of data samples (N) and number of tasks (T ), and
compare the statistical error of ERM, MAML, and
BaMAML in Figure 4. The statistical errors of all
methods decrease as the number of data samples in-
creases. When the number of data samples is small,
MAML has the largest statistical error, followed by Ba-
MAML and ERM. Similar trends exist with increasing
number of tasks. Figure 4 have also shown the dot-
ted black line as a reference, indicating the theoretical
decay rate of the statistical errors. Since MAML and
BaMAML has the same slope as the reference line, it
verifies the theoretical decay rate in Theorems 3-6.

4.2 Sinusoidal Regression

Experiment settings. For sinusoidal regression, fol-
lowing Yoon et al. (2018), the N -shot dataset for each
task is obtained from x ∼ U([−5.0, 5.0]) and then
by computing its corresponding y from the sinusoidal
function y = A sin(wx+ b)+ ε, with task-dependent pa-
rameters amplitude A, frequency w, and phase b, and
observation noise ε. For each task, the parameters are
sampled from A ∼ U([0.1, 5.0]), b ∼ U([0.0, 2π]), w ∼
U([0.5, 2.0]), ε ∼ N

(
0, (0.01A)2

)
. For all experiments

under this setting, we used a neural network with 3
layers, each of which consists of 40 hidden units.

Results. Figure 5 shows the testing error v.s. the
meta-train iterations for the compared methods, where
we can see that BaMAML converges to a point with
lowest meta-test error. For ERM and MAML, when T
is small (e.g. T = 100), the meta test error decreases
as the number of meta iterations increases in the begin-
ning, but increases later, showing a tendency to overfit.
Besides, the meta-test error decreases with increasing
number of tasks or number of per-task data, with a
similar trend as the linear regression even in the non-
linear sinewave regression. As the number of tasks or
number of per-task data increases, the performance gap
between MAML and BaMAML reduces, demonstrating
that BaMAML has more significant performance gain
in limited data settings.

5 CONCLUSIONS

In this paper, we study what makes BaMAML provably
better than MAML under the meta linear regression
setting. The meta-test risk can be decomposed into
the optimal population risk and statistical error. Our
analysis shows that, with proper choice of hyperparam-
eters, BaMAML has smaller optimal population risk
than MAML, demonstrating better adaptation ability
to new data. And for statistical errors, MAML and Ba-
MAML have the same dependence rate on the number
of tasks and the number of data per task for training,
while BaMAML has lower upper bound of the corre-
sponding coefficients, thus lower upper bound of sta-
tistical error. And in the high dimensional asymptotic
regime, BaMAML has strictly smaller statistical error
than MAML. The experiments on synthetic and real
datasets corroborate our theoretical findings. Build-
ing upon the current work, our future work includes
analyzing the performance in nonlinear meta learning
algorithms such as BaMAML with overparameterized
neural networks.
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Supplementary Material:
Is Bayesian Model-Agnostic Meta Learning Better than

Model-Agnostic Meta Learning, Provably?

In this appendix, we first present the problem setting, then some basic supporting lemmas, and the missing
derivations of some claims, as well as the proofs of all the lemmas and theorems in the paper, which is followed
by details on our experiments along with additional experimental results.

A Formulations and closed-form solutions

In this section, we will introduce the definition and computation of meta-test (population) risks and empirical
losses for the four methods that we will discuss, including ERM, MAML, iMAML, BaMAML. This prepares for
the analysis of optimal population risk and statistical error of the four methods in later sections.

A.1 Empirical risk minimization formulation

In the meta learning setting, ERM minimizes the average loss over all data, its empirical loss, meta-test risk and
their optimal solutions can be obtained by taking α = 0, N1 = 0, N2 = N in that of MAML (Gao and Sener,
2020), i.e. θ̂er

τ (θ0,Dtrn
τ ) = θ0, and based on the definition in (1), the empirical loss of ERM is given by

Ler(θ0,D) =
1

TN

T∑
τ=1

‖yall
τ,N −Xall

τ,Nθ0‖2. (27)

For brevity, denote eall
τ,N = [ετ,1, . . . , ετ,N ]> ∈ RN . And define θ̂er

0 as the minimizer of the ERM empirical loss,
given by

θ̂er
0 = arg min

θ0

Ler(θ0,D) = arg min
θ0

1

TN

T∑
τ=1

‖Xall
τ,Nθgt

τ + eall
τ,N −Xall

τ,Nθ0‖2. (28)

Using the optimality condition, we have

θ̂er
0 =

( T∑
τ=1

Ŵer
τ,N

)−1( T∑
τ=1

Ŵer
τ θ

gt
τ

)
+ ∆er

T (29a)

∆er
T =

( T∑
τ=1

Ŵer
τ,N

)−1( T∑
τ=1

1

N
Xall>
τ,N eall

τ,N

)
(29b)

Ŵer
τ =

1

N
Xall>
τ,N Xall

τ,N . (29c)

Based on the definition in (2), denote the number of adaptation data during meta testing as Na, then the total
meta-test risk of empirical risk minimization (ERM) can be specified by

Rer
Na(θ0) := Eτ

[
EDτ,Na

[
Ep(xτ ,yτ |τ)[

(
yτ − θ̂er

τ (θ0,Dτ,Na)>xτ )2]
]]

(30)

where θ̂er
τ (θ0,Dτ ) = θ0, plugging which into (30), we have

Rer
Na(θ0) = Eτ [(yτ − θ>0 xτ )2] = Eτ [‖θ0 − θgt

τ ‖2Wer
τ,Na

] + 1 (31a)

Wer
τ,Na = E[xτx

>
τ | τ ] = Qτ . (31b)
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By the general definition of optimal population risk in (2), the ERM optimal population risk is given by

Rer(θ0) := lim
Na→∞

Rer
Na(θ0) = Eτ [‖θ0 − θgt

τ ‖2Wer
τ

] + 1 (32a)

Wer
τ = Qτ . (32b)

Define θer
0 as the minimizer of the ERM optimal population risk, given by

θer
0 = arg min

θ0

Rer(θ0) = arg min
θ0

Eτ
[
‖θ0 − θgt

τ ‖2Wer
τ

]
= Eτ

[
Wer

τ

]−1Eτ
[
Wer

τ θ
gt
τ

]
. (33)

It is worth noting that, from (29c)(31b)(32b), we have the property E[Ŵer
τ,N ] = Wer

τ,Na
= Wer

τ , which will be
used in later sections to derive the specific optimal population risks and statistical errors.

A.2 Model agnostic meta learning method

For the one-step model agnostic meta learning (MAML) method, the task-specific parameter θ̂ma
τ is computed

from the initial parameter θ0 by taking one step gradient descent of the empirical loss function as shown below

θ̂ma
τ (θ0,Dτ ) = θ0 −

α

2
∇θ0

`τ
(
θ0,Dτ

)
= (I− αQ̂τ,N )θ0 +

α

N
X>τ,Nyτ,N (34)

1 where α > 0 is twice the stepsize, and N is the number of adaptation data. During meta-training, N = N1, is
the number of the training data. From the definition in (1) or (2), and combined with θ̂ma

τ in (34), the empirical
loss of MAML is given by

Lma(θ0,D) =
1

TN2

T∑
τ=1

‖yval
τ,N2
−Xval

τ,N2
θ̂ma
τ (θ0,Dtrn

τ )‖2. (35)

The minimizer of the MAML empirical loss is defined as

θ̂ma
0 = arg min

θ0

Lma(θ0,D) = arg min
θ0

1

TN2

T∑
τ=1

‖Xval
τ,N2

θgt
τ + eval

τ,N2
−Xval

τ,N2
θ̂ma
τ (θ0,Dtrn

τ )‖2. (36)

Using the optimality condition, we have

θ̂ma
0 =

( T∑
τ=1

Ŵma
τ

)−1( T∑
τ=1

Ŵma
τ θgt

τ

)
+ ∆ma

T (37a)

∆ma
T =

( T∑
τ=1

Ŵma
τ

)−1( T∑
τ=1

(
I− αQ̂trn

τ,N1

)( 1

N2
Xval>
τ,N2

eval
τ,N2
− α

N1
Q̂val
τ,N2

Xtrn>
τ,N1

etrn
τ,N1

))
(37b)

Ŵma
τ = (I− αQ̂trn

τ,N1
)Q̂val

τ,N2
(I− αQ̂trn

τ,N1
). (37c)

Based on (2), the MAML meta-test risk is defined as (Gao and Sener, 2020)

Rma
Na(θ0) = E[(yτ − θ̂ma

τ (θ0,Dτ,Na)>xτ )2] = Eτ
[
‖θ0 − θgt

τ ‖2Wma
τ,Na

]
+ 1 +

α2

Na
Eτ [tr(Q2

τ )] (38a)

Wma
τ,Na = EQ̂τ,N

[
(I− αQ̂τ,N )Qτ (I− αQ̂τ,N )

]
=
(
I− αQτ

)
Qτ

(
I− αQτ

)
+
α2

Na

(
Exτ,i

[
xτ,ix

>
τ,iQτxτ,ix

>
τ,i

]
−Q3

τ

)
. (38b)

Note that, limNa→∞Wma
τ,Na

→ Wma
τ , and limNa→∞

α2

Na
tr(Q2

τ ) = 0. Therefore, from the definition of optimal
population risk in (2), we have the MAML optimal population risk is

Rma(θ0) = lim
Na→∞

Rma
Na(θ0) = Eτ

[
‖θ0 − θgt

τ ‖2Wma
τ

]
+ 1. (39)

1Note that, here we define the learning rate as α/2 to cancel the scale factor 2 from the derivative for notation simplicity.
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In MAML, define θma
0 as the minimizer of the MAML optimal population risk, given by

θma
0 = arg min

θ0

Rma(θ0) = arg min
θ0

Eτ
[
‖θ0 − θgt

τ ‖2Wma
τ

]
= Eτ

[
Wma

τ

]−1Eτ
[
Wma

τ θgt
τ

]
. (40)

It is worth noting that, from Lemma 1, we have the property Exτ [Ŵma
τ,N ] = Wma

τ,N1
, limN1→∞Wma

τ,N1
= Wma

τ ,
which will be used in later sections to derive the specific optimal population risk and statistical error.

A.3 Implicit model agnostic meta learning method

For the iMAML method, the task-specific parameter θ̂im
τ is computed from the initial parameter θ0 by optimizing

the regularized task-specific empirical loss, given by

θ̂im
τ (θ0) = arg min

θτ

1

N
‖yτ,N −Xτ,Nθτ‖2 + γ‖θτ − θ0‖2 (41)

where γ is the weight of the regularizer, and Dτ,Na is the adaptation data during meta-testing or training data
during meta-training. The estimated task-specific parameter can be computed by

θ̂im
τ,N (θ0,Dτ ) = (Q̂τ,N + γI)−1(

1

N
X>τ,Nyτ,N + γθ0). (42)

The iMAML empirical loss is defined as the average per-task loss, which is computed by

Lim
T,N (θ0,D) =

1

TN2

T∑
τ=1

‖yval
τ,N2
−Xval

τ,N2
θ̂im
τ (θ0,Dtrn

τ )‖2 (43)

whose minimizer is

θ̂im
0 = arg min

θ0

Lim
T,N (θ0,D) = arg min

θ0

1

TN2

T∑
τ=1

‖Xval
τ,N2

θgt
τ + eval

τ,N2
−Xval

τ,N2
θ̂im
τ (θ0,Dtrn

τ )‖2. (44)

To solve for θim
0 in the above equation, using the optimality condition, we obtain

θ̂im
0 =

( T∑
τ=1

Ŵim
τ

)−1( T∑
τ=1

Ŵim
τ θgt

τ

)
+ ∆im

T (45a)

∆im
T =

( T∑
τ=1

Ŵim
τ

)−1( T∑
τ=1

γΣθτ

1

N2
Xval>
τ,N2

eval
τ,N2
− γ−1Ŵim

τ

1

N1
Xtrn>
τ,N1

etrn
τ,N1

)
(45b)

Σθτ ,N1
= (

1

N1
Xtrn>
τ,N1

Xtrn
τ,N1

+ γI)−1 = (Q̂τ,N1
+ γI)−1 (45c)

Ŵim
τ = γ2Σθτ ,N1

1

N2
Xval>
τ,N2

Xval
τ,N2

Σθτ ,N1 = γ2Σθτ ,N1Q̂τ,N2Σθτ ,N1 . (45d)

The iMAML meta-test risk is defined as

Rim
Na(θ0) = E

[(
yτ − θ̂im

τ (θ0,Dτ,Na)>xτ
)2]

= Eτ
[
‖θ0 − θgt

τ ‖2Wim
τ,Na

]
+ 1 +

1

Na
E[γ−2 tr(Wim

τ,NaQ̂τ,Na)] (46a)

Wim
τ,Na = Exτ

[
(Q̂τ,Na + γI)−1Qτ (Q̂τ,Na + γI)−1

]
= Wim

τ +

Exτ

[
Σθτ

(
Qτ − Q̂τ,Na

)
Wim

τ

(
Qτ − Q̂τ,Na

)
Σθτ + Σθτ

(
Qτ − Q̂τ,Na

)
Wim

τ + Wim
τ

(
Qτ − Q̂τ,Na

)
Σθτ

]
(46b)

where Wim
τ = (γ−1Qτ + I)−1Qτ (γ−1Qτ + I)−1.
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Let Σθτ = (Q̂τ,N + γI)−1, and Wim
τ,Na

= γ2ΣθτQτΣθτ . And we simplify the notation of Xτ,Na ,yτ,Na , Q̂τ,Na as
Xτ ,yτ , Q̂τ . The derivation of (46) is given below

Rim
Na(θ0) =E

[
‖θ̂im

τ (θ0,Dτ,Na)− θgt
τ ‖2Qτ

]
+ 1 = E

[
‖(Q̂τ + γI)−1(

1

Na
X>τ yτ + γθ0)− θgt

τ ‖2Qτ

]
+ 1

(a)
=E

[
θ>0 Wim

τ,Naθ0 + 2γ(
1

Na
y>τ XτΣθτ − θgt>

τ )QτΣθτθ0 +
1

Na
y>τ XτΣθτQτΣθτ

1

Na
X>τ yτ

− 2θgt>
τ QτΣθτ

1

Na
X>τ yτ + θgt>

τ Qτθ
gt
τ

]
+ 1 (47)

where (a) follows from the definition of Σθτ , Wim
τ,Na

. Applying the fact that yτ = Xτθ
gt
τ + eτ and Eeτ [eτ ] = 0,

one can further derive

Rim
Na(θ0)=E

[
θ>0 Wim

τ,Naθ0 + 2γ(θgt>
τ Q̂τΣθτ − θgt>

τ )QτΣθτθ0

+ θgt>
τ Q̂τΣθτQτΣθτ Q̂τθ

gt
τ − 2θgt>

τ QτΣθτ Q̂τθ
gt
τ + θgt>

τ Qτθ
gt
τ

+
1

N2
a

e>τ XτΣθτQτΣθτX
>
τ eτ

]
+ 1.

Based on the linearity of trace and expectation, and the cyclic property of trace, the last term inside the
expectation in the above equation can be computed as

Eeτ [e>τ XτΣθτQτΣθτX
>
τ eτ ] = tr(XτΣθτQτΣθτX

>
τ Eeτ [eτe

>
τ ])

=tr(XτΣθτQτΣθτX
>
τ ) = Natr(ΣθτQτΣθτ Q̂τ ) = Natr(Wim

τ,NaQ̂τ );

also, based on the Woodbury matrix identity, I− Q̂τΣθτ = I− Σθτ Q̂τ = γΣθτ , therefore
(θgt>
τ Q̂τΣθτ − θgt>

τ ) = θgt>
τ (Q̂τΣθτ − I) = −γθgt>

τ Σθτ , and

θgt>
τ Q̂τΣθτQτΣθτ Q̂τθ

gt
τ − 2θgt>

τ QτΣθτ Q̂τθ
gt
τ + θgt>

τ Qτθ
gt
τ

=θgt>
τ

(
(Q̂τΣθτ − I)QτΣθτ Q̂τ + Qτ (I− Σθτ Q̂τ )

)
θgt
τ

=θgt>
τ

(
− γΣθτQτΣθτ Q̂τ + QτγΣθτ

)
θgt
τ = γ−1θgt>

τ

(
−Wim

τ,NaQ̂τ + (Q̂τ + γI)Wim
τ,Na

)
θgt
τ .

Combining these equalities and rearranging the equations we obtain

Rim
Na(θ0)=E

[
θ>0 Wim

τ,Naθ0 − 2θgt>
τ Wim

τ,Naθ0

+ γ−1θgt>
τ

(
−Wim

τ,NaQ̂τ + (Q̂τ + γI)Wim
τ,Na

)
θgt
τ +

1

Naγ2
tr(Wim

τ,NaQ̂τ )
]

+ 1

(b)
=E
[
‖θ0 − θgt

τ ‖2Wim
τ,Na

+ γ−1θgt>
τ

(
−Wim

τ,NaQ̂τ + Q̂τW
im
τ,Na

)
θgt
τ +

1

Naγ2
tr(Wim

τ,NaQ̂τ )
]

+ 1

(c)
=E
[
‖θ0 − θgt

τ ‖2Wim
τ,Na

+
1

Naγ2
tr(Wim

τ,NaQ̂τ )
]

+ 1 (48)

where (b) follows from rearranging the equations; (c) follows from the fact that
θgt>τ

(
Wim

τ,Na
Q̂τ

)
θgt
τ =

(
θgt>τ (Wim

τ,Na
Q̂τ )θgt

τ

)>
= θgt>τ

(
Q̂τW

im
τ,Na

)
θgt
τ .

Therefore when Na → ∞,Exτ

[
‖Qτ − Q̂τ,Na‖

]
→ 0,Exτ

[
‖Qτ − Q̂τ,Na‖2

]
→ 0,Exτ

[
Wim

τ,Na

]
→ Wim

τ . That is
to say, limNa→∞ Exτ [Wim

τ,Na
] = Wim

τ , and since limNa→∞
1
Na

E[γ−2 tr(Wim
τ,Na

Q̂τ,Na)] = 0, from the definition of
optimal population risk in (2), the optimal population risk of iMAML is given by

Rim(θ0) := lim
Na→∞

Rim
Na(θ0) = Eτ

[
‖θ0 − θgt

τ ‖2Wim
τ

]
+ 1 (49a)

Wim
τ = (γ−1Qτ + I)−1Qτ (γ−1Qτ + I)−1 (49b)

whose minimizer is given by

θim
0 = arg min

θ0

Rim(θ0) = Eτ
[
Wim

τ

]−1Eτ
[
Wim

τ θgt
τ

]
. (50)

It is worth noting that, from Lemma 1, we have the property Exτ [Ŵim
τ,N ] = Wim

τ,N1
, limN1→∞Wim

τ,N1
= Wim

τ ,
which will be used in later sections to derive the specific optimal population risk and statistical error.
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A.4 Bayes model agnostic meta learning method

For the Bayes model agnostic meta learning (BaMAML) method, instead of obtaining a point estimation of the
task-specific parameter, during adaptation, it obtains the posterior distribution or its approximation, given by

p̂(θτ | Dτ ,θ0) = arg min
q(θτ )∈Q

Ep(xτ ,yτ |τ)

[
KL(q(θτ )‖p(θτ | Dτ ,θ0))

]
(51)

where p(θτ | Dτ ,θ0) can be computed from Bayes rule via

p(θτ | Dτ,N ,θ0) ∝ p(Dτ,N | θτ )p(θτ | θ0). (52)

Assuming yτ | xτ ,θτ ∼ N (θ>τ xτ , 1), the likelihood p(Dτ | θτ ) can be expressed by

p(Dτ,N | θτ ) =

N∏
n=1

p(yτ,n | xτ,n,θτ ) ∝ exp{−1

2
‖yτ,N −Xτ,Nθτ‖2}. (53)

Assuming the prior θτ | θ0 ∼ N (θ0,
1
γb

Id), with γb being the prespecified weight of the prior or regularizer. The
prior can be expressed by

p(θτ | θ0) ∝ exp{−γb
2
‖θτ − θ0‖2}. (54)

Combining (52)-(54), the posterior distribution of the per-task parameter satisfies

p(θτ | Dτ ,θ0) ∝ exp{−1

2
‖yτ,N −Xτ,Nθτ‖2 −

γb
2
‖θτ − θ0‖2} (55)

∝ exp{−1

2
(θτ − µθτ ,N )>Σ−1

θτ ,N
(θτ − µθτ ,N )} = N (µθτ ,N ,Σθτ ,N ) (56)

with Σθτ ,N = (X>τ,NXτ,N + γbI)−1, µθτ ,N = Σθτ ,N (X>τ,Nyτ,N + γbθ0). (57)

If p(θτ | Dτ ,θ0) ∈ Q, then p̂(θτ | Dτ ,θ0) = p(θτ | Dτ ,θ0), which holds in our analysis since Q is defined to be
the set of Gaussian distributions. The empirical loss of BaMAML is

Lba
T,N (θ0) :=

1

TN2

T∑
τ=1

[
−
∫

log p(Dval
τ | θτ )p̂ba(θτ | Dtrn

τ ,θ0)dθτ

]
s.t. p̂ba(θτ | Dtrn

τ ,θ0) = arg min
q(θτ )∈Q

KL(q(θτ )‖p(θτ | Dtrn
τ ,θ0)) (58)

where p̂ba(θτ | Dtrn
τ ,θ0) = pba(θτ | Dtrn

τ ,θ0) = N (µθτ ,N1 ,Σθτ ,N1) is the solution of the inner problem. Therefore

Lba
T,N (θ0) =

1

TN2

T∑
τ=1

− log p(Dval
τ | Dtrn

τ ,θ0)

= − 1

TN2

T∑
τ=1

[log p(Dval
τ ,Dtrn

τ | θ0)− log p(Dtrn
τ | θ0)]

where

log p(Dval
τ ,Dtrn

τ | θ0)− log p(Dtrn
τ | θ0) = log p(yall

τ,N | Xall
τ,N ,θ0)− log p(ytrn

τ,N1
| Xtrn

τ,N1
,θ0)

=− 1

2
‖yall

τ,N −Xall
τ,Nθ0‖2Σ−1

y,N

+
1

2
‖ytrn

τ,N1
−Xtrn

τ,N1
θ0‖2Σ−1

y,N1

(59)
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with Σ−1
y,N = (IN + γ−1

b Xτ,NX>τ,N )−1. The last equation is because p(yall
τ,N | Xall

τ,N ,θ0) can be computed by

p(yall
τ,N | Xall

τ,N ,θ0) =

∫
p(yall

τ,N | Xall
τ,N ,θτ )p(θτ | θ0)dθτ

∝
∫

exp{−1

2
‖yall

τ,N −Xall
τ,Nθτ‖2 −

γb
2
‖θτ − θ0‖2}dθτ

=

∫
exp{−1

2
(θτ − µθτ )>Σ−1

θτ
(θτ − µθτ ) +

1

2
µ>θτΣ−1

θτ
µθτ −

γb
2
θ>0 θ0 −

1

2
yall>
τ,N yall

τ,N}dθτ

∝ exp{−1

2
(−µ>θτΣ−1

θτ
µθτ + γbθ

>
0 θ0 + yall>

τ,N yall
τ,N )} = exp{−1

2
‖yall

τ,N −Xall
τ,Nθ0‖2Σ−1

y,N

} (60)

where the last equation follows from the Binomial inverse theorem. Similarly, p(ytrn
τ,N | Xtrn

τ,N ,θ0) ∝ exp{− 1
2‖y

trn
τ,N1
−

Xtrn
τ,N1

θ0‖2Σ−1
y,N1

}.

To solve for θ̂ba
0 , using the optimality condition, we obtain

θ̂ba
0 =

( T∑
τ=1

Ŵba
τ,N

)−1( T∑
τ=1

Ŵba
τ,Nθgt

τ

)
+ ∆ba

T (61a)

∆ba
T =

( T∑
τ=1

Ŵba
τ,N

)−1 1

N2

( T∑
τ=1

Xall>
τ,N Σ−1

y,Neall
τ,N −Xtrn>

τ,N1
Σ−1
y,N1

etrn
τ,N1

)
(61b)

Ŵba
τ,N =

(
(
γb
N

)−1Q̂τ,N + I
)−1

Q̂τ,N2

(
(
γb
N1

)−1Q̂τ,N1
+ I
)−1

(61c)

=
(

(γs)−1Q̂τ,N + I
)−1

Q̂τ,N2

(
γ−1Q̂τ,N1

+ I
)−1

(61d)

where the last equation is because we choose γb = N1γ for a fair comparison with iMAML.

Based on (2), the BaMAML meta-test risk is defined as

Rba
Na(θ0) =

1

N
E
[
− log p(yτ,N | Xτ,N ,Dτ,Na ,θ0)

]
=Eτ

[
‖θ0 − θgt

τ ‖2Wba
τ,Na

]
+ 1 +

1

Na
E
[
tr
(
(Id + (γs)−1Q̂τ,N+Na)−1 − (Id + γ−1Q̂τ,Na)−1

)]
(62a)

Wba
τ,Na = Exτ

[γb
N

[(Id + γ−1
b NaQ̂τ,Na)−1 − (Id + γ−1

b (N +Na)Q̂τ,N+Na)−1]
]

= Exτ

[(
(γs)−1Q̂τ,N+Na + I

)−1
Q̂τ,N

(
γ−1Q̂τ,Na + I

)−1] (62b)

Taking limits of Rba
Na

w.r.t. Na further leads to

Rba(θ0) := lim
Na→∞

Rba
Na(θ0) = lim

Na→∞
Eτ
[
‖θ0 − θgt

τ ‖2Wba
τ,Na

]
+ 1 = Eτ

[
‖θ0 − θgt

τ ‖2Wba
τ

]
+ 1 (63)

θba
0 is defined to be the minimizer of Rba(θ0), given by

θba
0 = arg min

θ0

Rba(θ0) = arg min
θ0

Eτ
[
‖θ0 − θgt

τ ‖2Wba
τ

]
= Eτ

[
Wba

τ

]−1Eτ
[
Wba

τ θgt
τ

]
, (64a)

with Wba
τ =

(
(γs)−1Qτ + I

)−1
Qτ

(
γ−1Qτ + I

)−1
. (64b)

It is worth noting that, from Lemma 1, we have the property Exτ [Ŵba
τ,N ] = Wba

τ,N1
, limN1→∞Wba

τ,N1
= Wba

τ ,
which will be used in later sections to derive the specific optimal population risk and statistical error.

The above discussion provides proof for Proposition 1. Next we analyze the optimal population risk and the
statistical error based on the solutions.
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B Optimal population risk and statistical error analysis

Meta-test risk decomposition. Recall the meta-test risk function for the method A of θ0 in (2). For method
A, plugging θ̂A0 into (2) and taking the limit over Na, the number of data during adaptation, we have

RA(θ̂A0 ) = Eτ
[
‖θ̂A0 − θgt

τ ‖2WA
τ

]
+ 1

(a)
=Eτ

[
‖θ̂A0 − θA0 + θA0 − θgt

τ ‖2WA
τ

]
+ 1

=Eτ
[
‖θ̂A0 − θA0 ‖2WA

τ
+ ‖θA0 − θgt

τ ‖2WA
τ

+ 2(θ̂A0 − θA0 )>WA
τ (θA0 − θgt

τ )
]

+ 1

(b)
=Eτ

[
‖θ̂A0 − θA0 ‖2WA

τ
+ ‖θA0 − θgt

τ ‖2WA
τ

+ 2(θ̂A0 − θA0 )>WA
τ (Eτ

[
WA

τ

]−1 Eτ
[
WA

τ θ
gt
τ

]
− θgt

τ )
]

+ 1

(c)
=Eτ

[
‖θ̂A0 − θA0 ‖2WA

τ
+ ‖θA0 − θgt

τ ‖2WA
τ

]
+ 1 (65)

where (a) follows from WA
τ = limNa→∞WA

τ,Na
, (b) is by plugging θA0 = Eτ

[
WA

τ

]−1Eτ
[
WA

τ θ
gt
τ

]
, (c) is because

Eτ [WA
τ (Eτ

[
WA

τ

]−1Eτ
[
WA

τ θ
gt
τ

]
−θgt

τ )] = Eτ
[
WA

τ θ
gt
τ

]
−Eτ

[
WA

τ θ
gt
τ

]
= 0. From (65) and the definition of RANa(·)

in (2), we can decompose the meta-test risk to the optimal population risk and statistical error as follows

lim
Na→∞

RANa(θ̂A0 ) = lim
Na→∞

RANa(θA0 )

optimal population risk

+ ‖θ̂A0 − θA0 ‖2Eτ [WA
τ ]

statistical error E2A(θ̂A0 )

. (66)

This completes the proof of Proposition 3 in the main paper. Note that, the statistical error E2
A(θ̂A0 ) is resulted

from finite random data samples during meta-training to obtain the estimation of the parameter θ̂A0 , but not
from Na in (66), which is the number of adaptation data during meta-testing.

B.1 Optimal population risk

The optimal population risk under different methods is given by RA(θA0 ) = minθ0 RA(θ0). Based on the results
in Section A, we compute the optimal population risk of each method.

For ERM, the optimal population risk is computed by

Rer(θer
0 ) = Eτ

[
‖θer

0 − θgt
τ ‖2Wer

τ

]
+ 1. (67)

For MAML, the optimal population risk is computed by

Rma(θma
0 , α) = Eτ

[
‖θma

0 − θgt
τ ‖2Wma

τ (α)

]
+ 1. (68)

Note that when α = 0, Rma(θma
0 , α) = Rer(θer

0 ).

Comparison of ERM and MAML optimal population risk. To compare the optimal population risk
of ERM and MAML, as shown in (Gao and Sener, 2020), when ‖Qτ‖ ≤ λ̄, 0 < α ≤ 1/λ̄, Rma(θma

0 , α) is
monotonically decreasing. Therefore Rma(θma

0 , α) < Rer(θer
0 ) when 0 < α ≤ 1/λ̄.

For iMAML, the optimal population risk is computed by

Rim(θim
0 , γ) = Eτ

[
‖θim

0 − θgt
τ ‖2Wim

τ (γ)

]
+ 1. (69)

Comparison of MAML and iMAML optimal population risk. We can see that as γ →∞,Wim
τ (γ)→

Wer
τ = Qτ ,Rim(θ0, γ) → Rer(θ0); as γ → 0,Wim

τ (γ) → 0,Rim(θ0) → 1. To explicitly compare the optimal
population risk of MAML and iMAML, we will show next that when γ takes certain values, the corresponding
risks satisfy Rim(θim

0 , γ) < Rma(θma
0 , α).

Corollary 2 Based on Assumption 1, for any τ ∼ p(T ), and any 0 < α < 1/λ̄, ‖Wma
τ ‖ > 0. And generally in a

typical multi-task learning setting, the tasks are not all identical, therefore there exist τ ∼ p(T ), τ ∈ T,θA0 −θgt
τ 6= 0.

Therefore there exists τ ∈ T such that (θma
0 − θgt

τ )>Wma
τ (θma

0 − θgt
τ ) > 0.
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First we show that the minimum value of the MAML population risk is larger than 1, i.e., Rma(θma
0 , α) > 1.

According to Corollary 2, it is apparent that

Eτ
[
‖θma

0 − θgt
τ ‖2Wma

τ

]
= Eτ

[
(θma

0 − θgt
τ )>Wma

τ (θma
0 − θgt

τ )
]
> 0. (70)

Therefore, we have

Rma(θma
0 , α) = Eτ

[
‖θma

0 − θgt
τ ‖2Wma

τ

]
+ 1 > 1. (71)

Note that Rma(θma
0 , α) also depends on α, Let rma = minαRma(θma

0 , α)− 1. From (71) we know that rma > 0.
We will then show one can always find certain γ such that

Rim(θim
0 , γ) < min

α
Rma(θma

0 , α) = rma + 1 (72)

or equivalently Eτ
[
‖θim

0 − θgt
τ ‖2Wim

τ

]
< rma.

From Assumption 1, bounded eigenvalues of per-task data matrix, we can derive

‖(γ−1Qτ + I)−1‖ = 1/λmin(γ−1Qτ + I) = 1/(γ−1λmin(Qτ ) + 1) ≤ 1

γ−1λ+ 1
(73)

from which we can bound the optimal population risk of iMAML by

Eτ
[
‖θim

0 − θgt
τ ‖2Wim

τ

]
≤ Eτ [‖θim

0 − θgt
τ ‖2]supτ‖Wim

τ ‖

where we have discussed the bound for supτ‖Wim
τ ‖ based on Assumption 1. And thus it suffices to bound

Eτ [‖θim
0 − θgt

τ ‖2], as follows

Eτ [‖θim
0 − θgt

τ ‖2] = ‖θim
0 ‖2 − 2θim>

0 Eτ [θgt
τ ] + tr(Covτ [θgt

τ ]) + ‖Eτ [θgt
τ ]‖2

≤‖θim
0 ‖2 + 2‖θim

0 ‖M + tr(Covτ [θgt
τ ]) +M2 ≤ ‖θim

0 ‖2 + 2‖θim
0 ‖M + tr(Covτ [θgt

τ ]) +M2

≤(M + ‖θim
0 ‖)2 +

R2

d
· d = (M + ‖θim

0 ‖)2 +R2

where the last inequality follows from Assumption 2 that the task parameter distribution is sub-gaussian. Similarly
Eτ [‖θim

0 − θgt
τ ‖2] ≤ (M + ‖θma

0 ‖)2 +R2. Therefore

Eτ
[
‖θim

0 − θgt
τ ‖2Wim

τ

]
≤ Eτ [‖θim

0 − θgt
τ ‖2]supτ‖Wim

τ ‖

≤
(
(M + ‖θim

0 ‖)2 +R2
)
Eτ
[
‖(γ−1Qτ + I)−1Qτ (γ−1Qτ + I)−1‖

]
≤
(
(M + ‖θim

0 ‖)2 +R2
)
Eτ
[
‖(γ−1Qτ + I)−1‖‖Qτ‖‖(γ−1Qτ + I)−1‖

]
(a)

≤
(
(M + ‖θim

0 ‖)2 +R2
)
λ̄

(γ−1λ+ 1)2
(74)

where (a) holds because ‖Qτ‖ ≤ λ̄, ‖(γ−1Qτ + I)−1‖ ≤ (γ−1λ+ 1)−1 from Assumption 1.

Let Cθ = max{
(
(M+‖θim

0 ‖)2+R2
) 1

2 ,
(
(M+‖θma

0 ‖)2+R2
) 1

2 }. In order to ensure
(
(M+‖θim

0 ‖)2+R2
)
λ̄ 1

(γ−1λ+1)2 ≤
C2

θλ̄
1

(γ−1λ+1)2 < rma, it suffices to ensure

γ−1λ+ 1 > (rma)−
1
2Cθλ̄

1
2 . (75)

Since 0 < rma = Eτ
[
‖θma

0 − θgt
τ ‖2Wma

τ

]
≤ C2

θEτ [‖Wma
τ ‖] < C2

θλ̄. It follows that

(rma)−
1
2Cθλ̄

1
2 − 1 > 0. (76)

Then from (75) and (76) one can derive

0 < γ <
(
(rma)−

1
2Cθλ̄

1
2 − 1

)−1
λ. (77)

In other words, by choosing (77), we have Rim(θim
0 , γ) < Rma(θma

0 , α) < Rer(θer
0 ),∀0 < α ≤ 1/λ̄. We summarize

this conclusion in Theorem 7 below.



Is Bayesian Model-Agnostic Meta Learning Better than Model-Agnostic Meta Learning, Provably?

Theorem 7 (iMAML has lower optimal population risk than MAML) Under Assumptions 1-2, for
meta-test task τ and arbitrary θ, the population risks for MAML and iMAML, as functions of θ, are

Rma(θ, α) ≡ Eτ
[
‖θ − θτ‖2Wma

τ (α)

]
+ 1 and Rim(θ, γ) ≡ Eτ

[
‖θ − θτ‖2Wim

τ (γ)

]
+ 1

where Wma
τ (α) = (I − αQτ )Qτ (I − αQτ ) and Wim

τ (γ) = (γ−1Qτ + I)−1Qτ (γ−1Qτ + I)−1. And the two
functions are minimized by θma

0 and θim
0 respectively. Let rma = minαRma(θma

0 , α)− c > 0, and when 0 < γ <(
(rma)−

1
2Cθλ̄

1
2 − 1

)−1
λ, then Rim(θim

0 , γ) < Rma(θma
0 , α).

For BaMAML, the optimal population risk is

Rba(θba
0 , γ) = Eτ

[
‖θba

0 − θgt
τ ‖2Wba

τ (γ)

]
+ 1 (78)

Similar to the proof for Theorem 7, BaMAML also has lower optimal population risk than MAML, as stated in
the following theorem.

Theorem 8 (BaMAML has lower optimal population risk than MAML) Under Assumptions 1-2, for
meta-test task τ and arbitrary θ, the optimal population risk for BaMAML, as functions of θ, is

Rba(θ, γ) = Eτ
[
‖θ − θτ‖2Wba

τ (γ)

]
+ 1.

And when 0 < γ <
(
(rma)−

1
2Cθλ̄

1
2 − 1

)−1
λ, then Rba(θba

0 , γ) < Rma(θma
0 , α).

B.2 Statistical error

To analyze the statistical error of different meta learning methods, we begin with a looser bound under data
agnostic case with Assumptions 1 and 2 only. And to give a sharper analysis of the statistical error in order
to make a fair comparison among different methods, we further make Assumption 3 on the task and data
distributions. In the following sections, we will first present the supporting lemmas and then the main results for
different methods.

B.2.1 Supporting Lemmas

In this section, we present some supporting lemmas for the proof of the main results for statistical errors of
different methods.

Lemma 1 Suppose Assumptions 1-2 hold. Define WA
τ,N := Exτ [ŴA

τ,N ], then

‖WA
τ,N‖ ≤ ‖WA

τ ‖+ LA
(
Õ(

d

N
) + Õ(

√
d

N
)
)
.

Proof: For ERM, Wer
τ,N := Exτ [Ŵer

τ,N ] = E[Ŵer
τ,N ] = E[Q̂τ,N ] = Qτ = Wer

τ , Ler = 0.

For MAML, from (38b), we have

Wma
τ,N = EQ̂τ,N

[
(I− αQ̂τ,N )Qτ (I− αQ̂τ,N )

]
= Wma

τ +
α2

N

(
Exτ,i

[
xτ,ix

>
τ,iQτxτ,ix

>
τ,i

]
−Q3

τ

)
therefore

‖Wma
τ,N‖ ≤ ‖Wma

τ ‖+
α2

N

∥∥∥Exτ,i

[
xτ,ix

>
τ,iQτxτ,ix

>
τ,i

]
−Q3

τ

∥∥∥
≤ ‖Wma

τ ‖+
α2

N
(K4λ̄+ λ̄3) = ‖Wma

τ ‖+
Lma

N
.
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For iMAML, recall Wim
τ,N = γ2ΣθτQτΣθτ , let I0 = γΣθτ − (I + γ−1Qτ )−1, further derived as

I0 =γΣθτ − (I + γ−1Qτ )−1 = (I + γ−1Q̂τ )−1 − (I + γ−1Qτ )−1

=γ−1(I + γ−1Qτ )−1(Qτ − Q̂τ )(I + γ−1Q̂τ )−1

Then we have

Wim
τ,N =Exτ [Ŵim

τ,N ] = Exτ [γΣθτQτγΣθτ ]

=Exτ

[(
γΣθτ + (I + γ−1Qτ )−1 − (I + γ−1Qτ )−1

)
Qτ

(
γΣθτ + (I + γ−1Qτ )−1 − (I + γ−1Qτ )−1

)]
=Exτ

[
(I + γ−1Qτ )−1Qτ (I + γ−1Qτ )−1

]
+ Exτ

[
I0QτI0

]
+ Exτ

[
I0Qτ (I + γ−1Qτ )−1 + (I + γ−1Qτ )−1QτI0

]
=Wim

τ + Exτ

[
I0QτI0

]
+ Exτ

[
I0(I + γ−1Qτ )Wim

τ,N + Wim
τ,N (I + γ−1Qτ )I0

]
=Wim

τ + Exτ

[
Σθτ (Qτ − Q̂τ )Wim

τ (Qτ − Q̂τ )Σθτ + Σθτ (Q̂τ −Qτ )Wim
τ + Wim

τ (Qτ − Q̂τ )Σθτ

]
where because

‖Exτ [Σθτ (Qτ − Q̂τ )Wim
τ ]‖ ≤ Exτ [‖Σθτ ‖‖Qτ − Q̂τ‖]‖Wim

τ ‖ ≤ Exτ [‖Qτ − Q̂τ‖]‖Wim
τ ‖

and ‖Exτ [Σθτ (Qτ − Q̂τ )Wim
τ (Qτ − Q̂τ )Σθτ ]‖ ≤ Exτ [‖Qτ − Q̂τ‖2]‖Wim

τ ‖. Based on sub-gaussian concentration
inequality, it holds with probability at least 1− δ that

∥∥∥Qτ − Q̂τ,N

∥∥∥ ≤ λ̄CK2
(√d+ log 2

δ

N
+
d+ log 2

δ

N

)
.

Therefore choose δ = N−1 and since xτ is bounded, we have

‖Wim
τ,N‖ ≤ ‖Wim

τ ‖+
(
Õ(

√
d

N
) + Õ(

d

N
)
)
Lim.

Similarly, for BaMAML,

Wba
τ,N = Exτ

[ γb
N1

(
(Id + γ−1

b N1Q̂τ,N1
)−1 − (Id + γ−1

b (N +N1)Q̂τ,N+N1
)−1
)]

=Exτ

[ γb
N1

(
(Id + γ−1

b N1Qτ )−1 − (Id + γ−1
b (N +N1)Qτ )−1

+ (Id + γ−1
b N1Q̂τ,N1)−1 − (Id + γ−1

b NQ̂τ,N )−1 − (Id + γ−1
b N1Qτ )−1 + (Id + γ−1

b NQτ )−1
)]

=Wba
τ +

γb
N1

Exτ

[
(Id + γ−1

b N1Q̂τ,N1)−1 − (Id + γ−1
b NQ̂τ,N )−1 − (Id + γ−1

b N1Qτ )−1 + (Id + γ−1
b NQτ )−1

]
=Wba

τ +
γb
N1

Exτ

[
γ(Id + γ−1

b N1Qτ )−1(Qτ − Q̂τ,N1
)(Id + γ−1

b N1Q̂τ,N1
)−1

− γ−1
b N(Id + γ−1

b NQτ )−1(Qτ − Q̂τ,N )(Id + γ−1
b NQ̂τ,N )−1

]
=Wba

τ + γExτ

[
γ(Id + γ−1Qτ )−1(Qτ − Q̂τ,N1

)(Id + γ−1Q̂τ,N1
)−1

− (γs)−1(Id + (γs)−1Qτ )−1(Qτ − Q̂τ,N )(Id + (γs)−1Q̂τ,N )−1
]

therefore

‖Wba
τ,N‖ ≤ ‖Wba

τ ‖+
(
Õ(

√
d

N
) + Õ(

d

N
)
)
Lba.

�

Lemma 2 (Concentration of ŴA
τ,N) Denote d as the dimension of θτ , T as the number of tasks. Suppose

Assumption 1 holds, and xτ,i is sub-gaussian with parameter k, then with probability at least 1 − Td−10, for
τ = 1, . . . , T , we have the following bounds, given by

0 � Ŵer
τ,N � Õ(cer)Id (79)
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where cer := 1 + max{d/N,
√
d/N}, and Õ(·) hides the logarithmic factor log(NdT ).

And denote ‖ · ‖op as the operator norm. With probability at least 1− Td−10, it holds that∥∥∥ 1

T

T∑
τ=1

Ŵer
τ,N − E

[
Ŵer

τ,N

]∥∥∥
op
≤ Õ

(
cer

√
d

T
+ d−4

)
, (80a)

∥∥∥ 1

T

T∑
τ=1

(Ŵer
τ,N )2 − E

[
(Ŵer

τ,N )2
]∥∥∥

op
≤ Õ

(
(cer)2

√
d

T
+ d−4

)
. (80b)

Proof: The proof is similar to Lemma C.4 in Bai et al. (2021), the difference is we do not need Assumption 3,
xτ,i ∼ N (0, Id), but only requires xτ,i to be sub-gaussian with parameter K. Recall that Ŵer

τ,N = 1
NXall>

τ,N Xall
τ,N =

Q̂τ,N . Applying the sub-gaussian covariance concentration ( Vershynin (2018), Exercise 4.7.3), we have with
probability at least 1− d−10 that

Ŵer
τ,N = Q̂τ,N � Qτ +

∥∥∥Q̂τ,N −Qτ

∥∥∥
op

Id

�
(
λ̄+ CK2

√
d+ log d

N
+ CK2 d+ log d

N

)
Id � Kτ c

erId (81)

where Kτ = O(1) is an absolute constant dependent on λ̄, C,K. Let Wτ :=
{
Ŵer

τ,N � Kτ c
erId

}
denote this event.

We have P(Wτ ) ≥ 1− Td−10. Let W :=
⋃T
t=1Wτ denote the union event. Note that on the event W we have

1

T

T∑
τ=1

Ŵer
τ,N =

1

T

T∑
τ=1

Ŵer
τ,N1{Wτ}.

And on the event Wτ ,Ŵ
er
τ,N is bounded by: 0 � Ŵer

τ,N1{Wτ} � Kτ c
erId, which means that for any v ∈ Rd

and ‖v‖2 = 1, the random variable v>Ŵer
τ,N1{Wτ}v − v>E

[
Ŵer

τ,N1{Wτ}
]
v is mean-zero and sub-gaussian with

parameter Kτ c
er. Therefore by the standard sub-gaussian concentration, we have

P
(∣∣∣v>( 1

T

T∑
τ=1

Ŵer
τ,N1

{
Wτ

})
v − v>E

[
Ŵer

τ,N1
{
Wτ

}]
v
∣∣∣ ≥ t) ≤ 2 exp

(
− Tt2

2(Kτ cer)2

)
.

Using the fact that for any symmetric matrix M, ‖M‖op ≤ 2 supv∈N1/4(Sd−1) |v>Mv| where N1/4(Sd−1) is a
1/4-covering set of the (d− 1)-unit sphere Sd−1 with |N1/4(Sd−1)| ≤ 9d ( Vershynin (2018) , Exercise 4.4.3), we
have

P
(∥∥∥ 1

T

T∑
τ=1

Ŵer
τ,N1

{
Wτ

}
− E

[
Ŵer

τ,N1
{
Wτ

}]∥∥∥
op
≥ t
)

≤
∣∣∣N1/4

(
Sd−1

)∣∣∣ · sup
‖v‖2=1

P
(∣∣∣v>( 1

T

T∑
τ=1

Ŵer
τ,N1

{
Wτ

})
v − v>E

[
Ŵer

τ,N1
{
Wτ

}]
v
∣∣∣ ≥ t)

≤ exp
(
− Tt2/2(Kτ c

er)2 + 3d
)
.

Taking t = O
(
Kτ c

er
√

6d+20 log(d)
T

)
= Õ

(
Kτ c

er
√

d
T

)
, the above probability is upper bounded by d−10. In other

words, with probability at least 1− Td−10, we have∥∥∥ 1

T

T∑
τ=1

Ŵer
τ,N1 {Wτ} − E

[
Ŵer

τ,N1 {Wτ}
]∥∥∥

op
≤ Õ

(
Kτ c

er

√
d

T

)
. (82)

To bound the difference between E
[
Ŵer

τ,N

]
and E

[
Ŵer

τ,N1{Wτ}
]
, it follows∥∥∥E[Ŵer

τ,N

]
− E

[
Ŵer

τ,N1 {Wτ}
]∥∥∥

op
≤ E

[∥∥Ŵer
τ,N

∥∥
op

1 {Wc
τ}
]
≤
(
E
[∥∥Ŵer

τ,N

∥∥2

op

]
· P (Wc

τ )
) 1

2

≤
√

E
[

max
i
‖xτ,i‖22

]
· d−10 ≤

√
k2 (d+ C logN) · d−10 = Õ

(
d−4.5

)
(83)
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where Wc
τ is the complement of Wτ , and the last inequality is by sub-gaussian norm concentration. Combining

(82) and (83), with probability at least 1− Td−10, we have that

∥∥∥ 1

T

T∑
τ=1

Ŵer
τ,N − E

[
Ŵer

τ,N

]∥∥∥
op
≤
∥∥∥ 1

T

T∑
τ=1

Ŵer
τ,N1 {Wτ} − E

[
Ŵer

τ,N1 {Wτ}
]∥∥∥

op

+
∥∥∥E[Ŵer

τ,N

]
− E

[
Ŵer

τ,N1 {Wτ}
]∥∥∥

op
≤ Õ

(
cer

√
d

T
+ d−4.5

)
.

Similarly we can prove that with probability at least 1− Td−10 that

∥∥∥ 1

T

T∑
τ=1

(Ŵer
τ,N )2 − E

[
(Ŵer

τ,N )2
]∥∥∥

op
≤ Õ

(
(cer)2

√
d

T
+ d−4

)
.

This completes the proof of Lemma 2. Note that, similar results apply to random weight matrices ŴA
τ,N of other

methods by replacing Ŵer
τ,N = Q̂τ,N with ŴA

τ,N � Q̂τ,N2
in (81). And Lemma 2 still holds with Assumption 3.

�

Lemma 3 (Hanson-Wright inequality) (Restatement of Theorem 6.2.1 in (Vershynin, 2018)). Let z ∈ Rd
be a random vector with independent, mean-zero, and K-sub-gaussian entries, and let C ∈ Rd×d be a fixed matrix.
Then it holds with probability at least 1− δ that∣∣∣z>Cz− E[z>Cz]

∣∣∣ ≤ O(K2‖C‖F log
2

δ

)
.

Lemma 4 (Linear combination of sub-gaussian) (Vershynin, 2018) Let z ∈ Rd be a random vector with
independent and K-sub-gaussian entries. Then for any v ∈ Sd−1(r),v>z is rK-sub-gaussian. In other words, it
holds with probability at least 1− δ that

∣∣∣v>z− E[v>z]
∣∣∣ ≤ O(rK√log

2

δ

)
.

Lemma 5 (Hanson-Wright inequality with non-zero mean) Let z ∈ Rd be a random vector with indepen-
dent, and K-sub-gaussian entries, and let C ∈ Rd×d be a fixed matrix. Then it holds with probability at least 1− δ
that ∣∣z>Cz− E

[
z>Cz

]∣∣ ≤ O(K2‖C‖F log(2/δ)
)

+O
(
K‖E[z]‖‖C‖op

√
log(2/δ)

)
.

Proof: ∣∣z>Cz− E
[
z>Cz

]∣∣ =
∣∣∣(z− E[z])>C(z− E[z])− E

[
(z− E[z])>C(z− E[z])

]
+ 2E[z]>C(z− E[z])

∣∣∣
≤
∣∣∣(z− E[z])>C(z− E[z])− E

[
(z− E[z])>C(z− E[z])

]∣∣∣+ 2
∣∣∣E[z]>C(z− E[z])

∣∣∣
≤ O

(
K2‖C‖F log(2/δ)

)
+O

(
K‖E[z]‖‖C‖op

√
log(2/δ)

)
where the last inequality follows from Lemma 3 and 4. Note that when E[z] = 0, this Lemma reduces to the
zero-mean version of Hanson-Wright inequality, i.e. Lemma 3. �

Lemma 6 (sub-gaussian random vector concentration) Let Uτ ∈ Rd×d, zτ ∈ Rd. Assume
∥∥Uτ

∥∥ ≤ λ̄ and
zτ has independent, mean-zero, K-sub-gaussian entries. With probability at least 1− δ, it holds that

∣∣∣∥∥ 1

T

T∑
τ=1

Uτzτ
∥∥− ∥∥Eτ [Uτzτ

]∥∥∣∣∣ ≤ Õ(Kλ̄√ d

T
log

2

δ

)
.
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Proof: Apply Lemma 3, the Hanson-Wright inequality, and let z = zτ , C = U>τ Uτ , we obtain that with
probability at least 1− δ,∣∣z>τ U>τ Uτzτ − Ezτ |Uτ

[
z>τ U>τ Uτzτ

]∣∣ ≤ O(K2‖U>τ Uτ‖F log
2

δ

)
.

Since ∣∣∣‖Uτzτ‖ − ‖Ezτ |Uτ

[
Uτzτ

]
‖
∣∣∣2 ≤ ∣∣∣‖Uτzτ‖2 − ‖Ezτ |Uτ

[
Uτzτ

]
‖2
∣∣∣

=
∣∣z>τ U>τ Uτzτ − Ezτ |Uτ

[
z>τ U>τ Uτzτ

]∣∣ ≤ O(K2d‖Uτ‖2op log
2

δ

)
where the last equation holds because zτ has mean-zero entries. Therefore, it holds with probability at least 1− δ
that ∣∣∣‖Uτzτ‖ − ‖Ezτ |Uτ

[
Uτzτ

]
‖
∣∣∣ ≤ O(Kλ̄√d log

2

δ

)
. (84)

Also, based on Lemma 4, it holds with probability at least 1− δ that∣∣∣‖Ezτ ,Uτ

[
Uτzτ

]
‖ − ‖Ezτ |Uτ

[
Uτzτ

]
‖
∣∣∣ ≤ ∥∥∥Ezτ ,Uτ

[
Uτzτ

]
− Ezτ |Uτ

[
Uτzτ

]∥∥∥
≤ Õ

(
Kλ̄
√
d log

2

δ

)
. (85)

Combining (84) and (85), it holds with probability at least 1− δ that∣∣∣‖ 1

T

T∑
τ=1

Uτzτ‖ − ‖Ezτ ,Uτ

[
Uτzτ

]
‖
∣∣∣ ≤ Õ(Kλ̄√ d

T
log

2

δ

)
. (86)

�

Lemma 7 (Bound of statistical error not caused by data noise) Define

zA :=
[
(θgt

1 − θA0 )>, . . . , (θgt
T − θA0 )>

]> ∈ RdT ,

UA :=
[
ŴA

1,N (
∑T
τ=1 ŴA

τ,N )−1, . . . ,ŴA
T,N (

∑T
τ=1 ŴA

τ,N )−1
]>
∈ RdT×d.

1) Suppose Assumptions 1-2 hold, the statistical error for method A is computed by

E2
A(θ̂A0 ) = ‖θ̂A0 − θA0 ‖2Eτ [WA

τ ] = z>AUAEτ [WA
τ ]U>AzA

IA1

+∆A>T Eτ [WA
τ ]∆AT + 2z>AUAEτ [WA

τ ]∆AT

where with probability at least 1− Td−10, the first term IA1 can be bounded above by 2

IA1 = z>AUAEτ [WA
τ ]U>AzA ≤

R2

T

(
λmin(E[WA

τ ])−1λmax(E[(WA
τ )2]) +O(

1

N
) + Õ(

1√
d

) + Õ(

√
d

T
)
)

+
(

1 + Õ(

√
d

T
)K +

LA

N

)
M2
(
O(

1

N
) + Õ(

√
d

T
)
)
.

2) Suppose Assumptions 1-3 hold, the statistical error for method A can be computed by

E2
A(θ̂A0 ) = wA‖θ̂A0 − θA0 ‖22 =wA(z>AUAU>AzA

IA2

+‖∆AT ‖22 + 2z>AUA∆AT )

Define C̃A0 := 1
d

〈
E−2

[
ŴA

τ,N

]
,E
[
(ŴA

τ,N )2
]〉
. With probability at least 1− Td−10, IA2 can be bounded above by

IA2 = z>AUAU>AzA ≤
R2

T

(
C̃A0 + Õ(

1√
d

) + Õ(

√
d

T
)
)
.

2Note that, we provide bound for IA1 and IA2 in this lemma since it has the same form for different methods A. And
the bound for the rest terms in the statistical error are deferred to later sections for the specific methods.
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Proof: The derivations in Section A give the empirical solutions θ̂A0 as below

θ̂A0 =
( T∑
τ=1

ŴA
τ,N

)−1( T∑
τ=1

ŴA
τ,Nθgt

τ

)
+ ∆AT . (87)

Thus the difference between the estimated model parameter θ̂A0 and the population-wise optimal model parameter
θA0 , which is be used to compute the statistical error, is given by

θ̂A0 − θA0 =
( T∑
τ=1

ŴA
τ,N

)−1( T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
)

+ ∆AT = U>AzA + ∆AT (88)

based on which the statistical error E2
A(θ̂A0 ) in (11) can be computed by

E2
A(θ̂A0 ) = ‖θ̂A0 − θA0 ‖2Eτ [WA

τ ] = z>AUAEτ [WA
τ ]U>AzA

IA1

+‖∆AT ‖2Eτ [WA
τ ] + 2z>AUAEτ [WA

τ ]∆AT (89)

where IA1 is the only term that does not depend on ∆AT , which is caused by the random noise ε in the data.
In other words, when the variance of ε becomes zero, the statistical error E2

A(θ̂A0 ) reduces to IA1 , or IA1 is the
statistical error in the noiseless realizable case. We next proceed to bound IA1 by considering the concentration
around its mean as follows

z>AUAEτ [WA
τ ]U>AzA

≤|z>AUAEτ [WA
τ ]U>AzA − EzA|UA [z>AUAEτ [WA

τ ]U>AzA]|+ EzA|UA [z>AUAEτ [WA
τ ]U>AzA].

Next we will bound the above two terms respectively. We first bound |z>AUAEτ [WA
τ ]U>AzA −

EzA|UA [z>AUAEτ [WA
τ ]U>AzA]|. From Assumptions 1-2, θgt

τ − θA0 are (R/
√
d)-sub-gaussian. To bound the

absolute error around the expectation, from the Hanson-Wright inequality in Lemma 5, with probability at least
1− δ, the following inequality holds∣∣z>AUAEτ [WA

τ ]U>AzA − EzA|UA [z>AUAEτ [WA
τ ]U>AzA]

∣∣
≤Õ

(R2

d

∥∥∥( T∑
τ=1

ŴA
τ,N

)−1Eτ [WA
τ ]
( T∑
τ=1

ŴA
τ,N

)−1
(

T∑
τ=1

(ŴA
τ )2)

∥∥∥
F

)
+ Õ

( R√
d
M
∥∥∥( T∑

τ=1

ŴA
τ,N

)−1Eτ [WA
τ ]
( T∑
τ=1

ŴA
τ,N

)−1
(

T∑
τ=1

(ŴA
τ )2)

∥∥∥
op

)
≤Õ

(R2 +RM

dT

∥∥∥ 1

T

T∑
τ=1

ŴA
τ,N

∥∥∥−2

·
√
d
∥∥∥ 1

T

T∑
τ=1

ŴA
τ

∥∥∥2

op

∥∥∥Eτ [WA
τ ]
∥∥∥

op

)
= Õ

(R2 +RM

T
√
d

)
. (90)

Note that in the last equation, we ignore the higher order terms in ‖ 1
T

∑T
τ=1 ŴA

τ,N‖op, which can be obtained
from Lemma 2.

To bound the expected statistical error, EzA|UA [z>AUAEτ [WA
τ ]U>AzA], first note that since for all τ , WA

τ is
symmetric positive definite (PD) based on Assumption 1, Eτ [WA

τ ] is also symmetric PD, who has a Cholesky
decomposition, Eτ [WA

τ ] = E
1
2
τ [WA

τ ]E
1
2
τ [WA

τ ]> with E
1
2
τ [WA

τ ] defined as the lower triangular matrix in the
decomposition. The statistical error can be rewritten as

z>AUAEτ [WA
τ ]U>AzA = tr(z>AUAEτ [WA

τ ]U>AzA) = tr
(

(E
1
2
τ [WA

τ ]U>AzA)(E
1
2
τ [WA

τ ]U>AzA)>
)

=tr

((
E

1
2
τ [WA

τ ]
( T∑
τ=1

ŴA
τ,N

)−1( T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
))(

E
1
2
τ [WA

τ ]
( T∑
τ=1

ŴA
τ,N

)−1( T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
))>)
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whose conditional expectation is given by

EzA|UA [z>AUAEτ [WA
τ ]U>AzA]

=Eθgt
τ |ŴA

τ,N

[
tr
((

E
1
2
τ [WA

τ ]
( T∑
τ=1

ŴA
τ,N

)−1( T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
))(

E
1
2
τ [WA

τ ]
( T∑
τ=1

ŴA
τ,N

)−1( T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
))>)]

= tr
(

Covθgt
τ |ŴA

τ,N

[
E

1
2
τ [WA

τ ]
( T∑
τ=1

ŴA
τ,N

)−1( T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
)])

Ia

+
∥∥∥Eθgt

τ |ŴA
τ,N

[
E

1
2
τ [WA

τ ]
( T∑
τ=1

ŴA
τ,N

)−1( T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
)]∥∥∥2

Ib

(91)

where the last equation is given by the fact that E[zz>] = Cov[z]+E[z]E[z]> for any random vector z, and the linear
and cyclic property of trace. From Assumption 2, θgt

τ −θA0 has sub-gaussian entries, and Lemma 4, linear combina-
tions of sub-gaussian random variables are still sub-gaussian, E

1
2
τ [WA

τ ]
(∑T

τ=1 ŴA
τ,N

)−1(∑T
τ=1 ŴA

τ,N (θgt
τ − θA0 )

)
has sub-gaussian entries with parameter

∥∥E 1
2
τ [WA

τ ]
(∑T

τ=1 ŴA
τ,N

)−1∥∥2

op

∥∥∑T
τ=1(ŴA

τ,N )2
∥∥

op
R2/d, which is the

upper bound of the variance of each entry based on the sub-gaussian property. Since the trace of the covariance
is the sum of the variance of all entries, it holds that

Ia ≤d
∥∥∥E 1

2
τ [WA

τ ]
( T∑
τ=1

ŴA
τ,N

)−1
∥∥∥2

op

∥∥∥ T∑
τ=1

(ŴA
τ,N )2

∥∥∥
op

R2

d

≤
∥∥∥Eτ [WA

τ ]
∥∥∥

op

∥∥∥ T∑
τ=1

ŴA
τ,N

∥∥∥−2

op

∥∥∥ T∑
τ=1

(ŴA
τ,N )2

∥∥∥
op
R2

≤R
2

T

∥∥∥Eτ [WA
τ ]
∥∥∥

op

∥∥∥ 1

T

T∑
τ=1

ŴA
τ,N

∥∥∥−2

op

∥∥∥ 1

T

T∑
τ=1

(ŴA
τ,N )2

∥∥∥
op
. (92)

Ib can be further derived as

Ib =
∥∥∥Eθ

gt
τ |ŴAτ,N

[
E

1
2
τ [W

A
τ ]
( T∑
τ=1

ŴA
τ,N

)−1( T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
)]∥∥∥2

=
〈
Eτ [WA

τ ]
(
E

θ
gt
τ |ŴAτ,N

[( T∑
τ=1

ŴA
τ,N

)−1( T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
)]

+
( T∑
τ=1

ŴA
τ,N

)−1E
θ
gt
τ ,Ŵ

A
τ,N

[ T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
])
,

E
θ
gt
τ |ŴAτ,N

[( T∑
τ=1

ŴA
τ,N

)−1( T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
)]
−
( T∑
τ=1

ŴA
τ,N

)−1E
θ
gt
τ ,Ŵ

A
τ,N

[ T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
]

Ib1

〉

+
〈
Eτ [WA

τ ]
(( T∑

τ=1

ŴA
τ,N

)−1E
θ
gt
τ ,Ŵ

A
τ,N

[ T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
]
+
( T∑
τ=1

ŴA
τ,N

)−1E
θ
gt
τ ,W

A
τ,N

[ T∑
τ=1

WA
τ,N (θgt

τ − θA0 )
])
,

( T∑
τ=1

ŴA
τ,N

)−1E
θ
gt
τ ,Ŵ

A
τ,N

[ T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
]
−
( T∑
τ=1

ŴA
τ,N

)−1E
θ
gt
τ ,WAτ

[ T∑
τ=1

WA
τ (θ

gt
τ − θA0 )

]
Ib2

〉

+
〈
Eτ [WA

τ ]
( T∑
τ=1

ŴA
τ,N

)−1E
θ
gt
τ ,WAτ

[ T∑
τ=1

WA
τ (θ

gt
τ − θA0 )

]
,
( T∑
τ=1

ŴA
τ,N

)−1E
θ
gt
τ ,WAτ

[ T∑
τ=1

WA
τ (θ

gt
τ − θA0 )

]〉
Ib3
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where Ib1 can be further derived as

Ib1 =
( T∑
τ=1

ŴA
τ,N

)−1
{
Eθgt

τ |ŴA
τ,N

[ T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
]
− Eθgt

τ ,Ŵ
A
τ,N

[ T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
]}

=
( 1

T

T∑
τ=1

ŴA
τ,N

)−1
{ 1

T

T∑
τ=1

ŴA
τ,NEθgt

τ |ŴA
τ,N

[
θgt
τ − θA0

]
− EŴA

τ,N

[
ŴA

τ,NEθgt
τ |ŴA

τ,N
[θgt
τ − θA0 ]

]}
‖Ib1‖ ≤ Õ

(√ d

T

)
KM

∥∥∥ 1

T

T∑
τ=1

ŴA
τ,N

∥∥∥−1

op
.

And for Ib2, it holds that

Ib2 =
( T∑
τ=1

ŴA
τ,N

)−1
{
Eθgt

τ ,Ŵ
A
τ,N

[ T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
]
− Eθgt

τ ,W
A
τ,N

[ T∑
τ=1

WA
τ,N (θgt

τ − θA0 )
]}

=
( T∑
τ=1

ŴA
τ,N

)−1
{
Eθgt

τ ,W
A
τ,N ,Ŵ

A
τ,N

[ T∑
τ=1

(ŴA
τ,N −WA

τ,N )(θgt
τ − θA0 )

]}
=
( 1

T

T∑
τ=1

ŴA
τ,N

)−1
{
Eθgt

τ ,W
A
τ,N ,Ŵ

A
τ,N

[ 1

T

T∑
τ=1

(ŴA
τ,N − E[ŴA

τ,N ] + E[ŴA
τ,N ]−WA

τ )(θgt
τ − θA0 )

]}
‖Ib2‖ ≤

(
Õ(

√
d

T
)K +

∥∥E[ŴA
τ,N −WA

τ ]
∥∥)M∥∥∥ 1

T

T∑
τ=1

ŴA
τ,N

∥∥∥−1

op
.

Ib3 = 0 since Eθgt
τ ,W

A
τ,N

[∑T
τ=1 WA

τ,N (θgt
τ − θA0 )

]
= 0. Combining Ib1, Ib2, Ib3 from above discussions we can

bound Ib by

Ib =
∥∥∥Eθgt

τ |ŴA
τ,N

[
E

1
2
τ [WA

τ ]
( T∑
τ=1

ŴA
τ,N

)−1( T∑
τ=1

ŴA
τ,N (θgt

τ − θA0 )
)]∥∥∥2

≤
(
Õ(

√
d

T
)K +

∥∥E[ŴA
τ,N −WA

τ ]
∥∥)M2

∥∥∥Eτ [WA
τ ]
∥∥∥

op

∥∥∥ 1

T

T∑
τ=1

ŴA
τ,N

∥∥∥−1

op
. (93)

Combining the bound for Ia and Ib, the expected statistical error conditioned on ŴA
τ,N is bounded by

EzA|UA [z>AUAEτ [WA
τ ]U>AzA] ≤ R2

T

∥∥∥Eτ [WA
τ ]
∥∥∥

op

∥∥∥ 1

T

T∑
τ=1

ŴA
τ,N

∥∥∥−2

op

∥∥∥ 1

T

T∑
τ=1

(ŴA
τ,N )2

∥∥∥
op

+
(
Õ(

√
d

T
)K +

∥∥E[ŴA
τ,N −WA

τ ]
∥∥)M2

∥∥∥Eτ [WA
τ ]
∥∥∥

op

∥∥∥ 1

T

T∑
τ=1

ŴA
τ,N

∥∥∥−1

op
. (94)

Finally note that
∥∥E[ŴA

τ,N −WA
τ ]
∥∥ ≤ LA

N = O( 1
N ), by combining (90)(94), with probability at least 1− Td−10,

it holds that

z>AUAEτ [WA
τ ]U>AzA ≤

R2

T

(∥∥∥Eτ [WA
τ ]
∥∥∥

op

∥∥∥E[ŴA
τ,N ]

∥∥∥−2

op

∥∥∥E[(ŴA
τ,N )2]

∥∥∥
op

+ Õ(
1√
d

) + Õ(

√
d

T
)
)

+
(
Õ(

√
d

T
) +

LA

N

)
M2
∥∥∥Eτ [WA

τ ]
∥∥∥

op

(∥∥∥E[ŴA
τ,N ]

∥∥∥−1

op
+ Õ(

√
d

T
)
)

≤ R2

T

(
λmin(E[WA

τ ])−1λmax(E[(WA
τ )2]) +O(

1

N
) + Õ(

1√
d

) + Õ(

√
d

T
)
)

+
(
Õ(

√
d

T
) + Õ(

√
d

N
) + Õ(

d

N
)
)
M2. (95)
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This completes the proof in the data agnostic case without Assumption 3. Next we proceed to prove the bound
under the case with Assumption 3.

From Assumption 3, WA
τ = wAId, where wA is the same for different task τ , therefore θA0 = Eτ [θgt

τ ]. And
wer = 1, wma = (1− α)2, wim = (1 + γ−1)−2, wba = (1 + (γs)−1)−1(1 + γ−1)−1. By using this property in (11),
we obtain a simplified meta-test risk decomposition of method A to the statistical and optimal population risk in
the linear centroid model by

lim
N→∞

RANa(θ̂A0 ) = wA‖θ̂A0 − θA0 ‖22
statistical error E2A(θ̂A0 )

+ lim
N→∞

RANa(θA0 )

optimal population risk

. (96)

Thus the statistical error in (96) can be computed by

E2
A(θ̂A0 ) = wA‖θ̂A0 − θA0 ‖22 =wA(z>AUAU>AzA

IA2

+‖∆AT ‖22 + 2z>AUA∆AT ). (97)

We will bound term IA2 in the above equation. The only difference of IA2 from IA1 is that we can treat Eτ [Wτ ] = Id
and M = 0 when adding Assumption 3. Therefore, with probability at least 1− δ, we have∣∣∣z>AUAU>AzA − Eθgt

τ ,eτ |ŴA
τ,N

[z>AUAU>AzA]
∣∣∣ = Õ

( R2

T
√
d

)
. (98)

To compute Eθgt
τ ,eτ |ŴA

τ,N
[z>AUAU>AzA], first we have

Eθgt
τ ,eτ |ŴA

τ,N
[z>AUAU>AzA]

=
R2

Td

〈( 1

T

T∑
τ=1

ŴA
τ,N

)−2

,
1

T

T∑
τ=1

(ŴA
τ,N )2

〉
=
R2

T

[ 1

d

〈
E−2

[
ŴA

τ,N

]
,E
[
(ŴA

τ,N )2
]〉

=C̃A0

+
1

d

〈( 1

T

T∑
τ=1

ŴA
τ,N

)−2

− E−2
[
ŴA

τ,N

]
,E
[
(ŴA

τ,N )2
]〉

Ic

+
1

d

〈( 1

T

T∑
τ=1

ŴA
τ,N

)−2

,
1

T

T∑
τ=1

(ŴA
τ,N )2 − E

[
(ŴA

τ,N )2
]〉

Id

]
. (99)

For term Ic and Id, from Lemma 2, we have with probability at least 1− Td−10 that

|Ic| ≤ Õ(

√
d

T
), |Id| ≤ Õ(

√
d

T
). (100)

Combining (99) and (100), we have with probability at least 1− Td−10

Eθgt
τ ,eτ |ŴA

τ,N
[z>AUAU>AzA] ≤ R2

T

(
C̃A0 + Õ(

√
d

T
)
)
. (101)

Then combining (98),(101), it holds with probability at least 1− Td−10 that

IA2 = z>AUAU>AzA ≤
R2

T

(
C̃A0 + Õ(

1√
d

) + Õ(

√
d

T
)
)
. (102)

�

Lemma 8 (Dominating constant in statistical error) Suppose Assumptions 1-3 hold. The dominating
constant in the statistical error of meta learning method A is computed by

C̃A0 :=
1

d

〈
E−2

[
ŴA

τ

]
,E
[
(ŴA

τ )2
]〉

=
1

d
E
[
tr
(
(ŴA

τ )2
)]{1

d
E
[
tr(ŴA

τ )
]}−2

≥ 1.
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Proof: We have proved in previous sections that the dominating constant in the statitical error of meta learning
method A adopts the form C̃A0 := 1

d

〈
E−2

[
ŴA

τ

]
,E
[
(ŴA

τ )2
]〉
. Next we will prove the equality by showing that

E[ŴA
τ ] = 1

dE[tr(ŴA
τ )]Id.

Let Xτ,N = Uτ,NDτ,NV>τ,N be the SVD of Xτ,N , where Uτ,N ∈ RN×N ,Dτ,N ∈ RN×d,Vτ,N ∈ Rd×d. De-
fine Q̂τ,N := 1

NX>τ,NXτ,N , and denote λ(N)
1 ≥ · · · ≥ λ

(N)
d as the eigenvalues of Q̂τ,N . Then D>τ,NDτ,N =

NDiag(λ
(N)
1 , . . . , λ

(N)
d ).

For ERM, based on the expression of Ŵer
τ , we have

E[Ŵer
τ ] = E[Q̂er

τ,N ] = E[
1

N
Vτ,ND>τ,NDτ,NV>τ,N ]

=E[Vτ,NDiag(λ
(N)
1 , . . . , λ

(N)
d )V>τ,N ] = E[

d∑
i=1

λ
(N)
i vτ,iv

>
τ,i]. (103)

Then we show that E[Ŵer
τ ] = 1

dE[tr(Ŵer
τ )]Id by the permutation trick. We utilize the isotropicity of Xτ .

For notation simplicity, we use Vτ to replace Vτ,N in the following discussion since the value of N does
not affect the arguments. Recall that Vτ is uniform on all the orthogonal matrices. Let P ∈ Rd×d be
any permutation matrix, then VτP has the same distribution as Vτ . For this permuted data matrix VτP,
E[
∑d
i=1 λ

(N)
i vτ,iv

>
τ,i] = E

[∑d
i=1 λ

(N)
i vτ,tp(i)v

>
τ,tp(i)

]
with tp(i) denoting the permutation of the i-th element in P.

Summing over all the permutations P (and there are totally d! instances), we deduce

d!E[Ŵer
τ ] =

∑
all tp

E
[ d∑
i=1

λ
(N)
i vτ,tp(i)v

>
τ,tp(i)

]
= (d− 1)!E

[ d∑
j=1

( d∑
i=1

λ
(N)
i

)
vτ,jv

>
τ,j

]

=(d− 1)!E
[
Vτ Diag

( d∑
i=1

λ
(N)
i , . . . ,

d∑
i=1

λ
(N)
i

)
V>τ

]
=(d− 1)!E

[ d∑
i=1

(λ
(N)
i )2VτV

>
τ

]
= (d− 1)!E[tr(Ŵer

τ )]Id

which gives E[Ŵer
τ ] = 1

dE[tr(Ŵer
τ )]Id.

For MAML, using the expression of Ŵma
τ and the permutation trick, we have

E
[
Ŵma

τ,N

]
= E

[(
I− αQ̂τ,N1

)
Q̂τ,N2

(
I− αQ̂τ,N1

)]
= E

[(
I− αQ̂τ,N1

)
Qτ

(
I− αQ̂τ,N1

)]
=E
[
Vτ,N1

Diag
(

(1− αλ(N1)
1 )2, . . . , (1− αλ(N1)

d )2
)
V>τ,N1

]
=

1

d
E
[ d∑
i=1

(1− αλ(N1)
i )2

]
Id =

1

d
E
[
tr(Ŵma

τ,N )
]
Id. (104)

Following similar arguments, for iMAML, it also holds that E[Ŵim
τ ] = 1

dE[tr(Ŵim
τ )]Id. And for BaMAML, we

use the expression Ŵba
τ = γs

1−s [(Id + γ−1Q̂τ,N1
)−1 − (Id + (γs)−1Q̂τ,N )−1], which apparently gives E[Ŵba

τ ] =
1
dE[tr(Ŵba

τ )]Id using the permutation trick.

To summarize, we have proved for all four methods ERM, MAML, iMAML and BaMAML, E[ŴA
τ ] =

1
dE[tr(ŴA

τ )]Id. Then it is not hard to see that

C̃A0 :=
1

d

〈
E−2

[
ŴA

τ

]
,E
[
(ŴA

τ )2
]〉

=
1

d
E
[
tr
(
(ŴA

τ )2
)]{1

d
E
[
tr(ŴA

τ )
]}−2

.

Finally, applying Jensen’s inequality, for any PSD matrix M ∈ Rd×d, we have 1
d tr(M2) ≥ ( 1

d tr(M))2, therefore

C̃A0 :=
1

d

〈
E−2

[
ŴA

τ

]
,E
[
(ŴA

τ )2
]〉

=
1

d
E
[
tr
(
(ŴA

τ )2
)]{1

d
E
[
tr(ŴA

τ )
]}−2

≥ 1.
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Lemma 9 (Constant in statistical error of MAML) Suppose Assumptions 1-3 hold. The dominating con-
stant in the statistical error of MAML is computed by

C̃ma
0 :=

1

d

〈
E
[
Ŵma

τ,N

]−2
,E
[
(Ŵma

τ,N )2
]〉

=
1

dN2
E
[
tr2
(

(I− αQ̂τ,N1
)2
)

+ (N2 + 1)tr
(

(I− αQ̂τ,N1
)4
) ]{1

d
E
[
tr
(
(I− αQ̂τ,N1

)2
)]}−2

.

Proof: We reuse the permutation trick to derive E
[
(Ŵma

τ,N )2
]
below.

E
[
(Ŵma

τ,N )2
]

= E
[(

I− αQ̂τ,N1

)
Q̂τ,N2

(
I− αQ̂τ,N1

)2
Q̂τ,N2

(
I− αQ̂τ,N1

)]
(105)

We know that E
[
(Ŵma

τ,N )2
]
is equal to a scale factor times Id, the identity matrix. And the scale factor can be

derived below

trE
[
(Ŵma

τ,N )2
]

= trE
[
Q̂τ,N2

(
I− αQ̂τ,N1

)2
Q̂τ,N2

(
I− αQ̂τ,N1

)2]
=

1

N2
2

trE
[
Xval
τ,N2

(
I− αQ̂τ,N1

)2
Xval>
τ,N2

Xval
τ,N2

(
I− αQ̂τ,N1

)2
Xval>
τ,N2

]
=

1

N2
2

trE
[(

Xval
τ,N2

Vtrn
τ Diag

(
(1− αλ(N1)

1 )2, . . . , (1− αλ(N1)
d )2

)
Vtrn>
τ Xval>

τ,N2

)2]
=

1

N2
2

trE
[( N2∑

i,j=1

Diag
(
(1− αλ(N1)

1 )2, . . . , (1− αλ(N1)
d )2

)
vjv

>
i

)2]

=
1

N2
2

E
[ N2∑

i

tr
(

Diag
(
(1− αλ(N1)

1 )2, . . . , (1− αλ(N1)
d )2

)
viv
>
i

)2

+
∑
i6=j

(Diag
(
(1− αλ(N1)

1 )2, . . . , (1− αλ(N1)
d )2

)
vjv

>
i )2
]

=
1

N2d
E
[
tr2
(

Diag
(
(1− αλ(N1)

1 )2, . . . , (1− αλ(N1)
d )2

))
+ 2
∥∥∥Diag

(
(1− αλ(N1)

1 )2, . . . , (1− αλ(N1)
d )2

)∥∥∥2

F

+ (N2 − 1)
∥∥∥Diag

(
(1− αλ(N1)

1 )2, . . . , (1− αλ(N1)
d )2

)∥∥∥2

F

]
. (106)

By combining Lemma 8, (105), and (106), we arrive at the following

C̃ma
0 :=

1

d

〈
E
[
Ŵma

τ,N

]−2
,E
[
(Ŵma

τ,N )2
]〉

=
1

dN2
E
[( d∑

i=1

(1− αλ(N1)
i )2

)2

+ (N2 + 1)
( d∑
i=1

(1− αλ(N1)
i )4

)]{1

d
E
[ d∑
i=1

(1− αλ(N1)
i )2

]}−2

=
1

dN2
E
[
tr2
(

(I− αQ̂τ,N1)2
)

+ (N2 + 1)tr
(

(I− αQ̂τ,N1)4
)]{1

d
E
[
tr
(
(I− αQ̂τ,N1)2

)]}−2

. (107)

�

B.2.2 Statistical error of ERM

Following the definition of θ̂er
0 in (29a), we have

θ̂er
0 − θer

0 =
( T∑
τ=1

Ŵer
τ

)−1( T∑
τ=1

Ŵer
τ (θgt

τ − θer
0 )
)

+
( T∑
τ=1

Ŵer
τ

)−1( T∑
τ=1

1

N
Xall>
τ,N eall

τ,N

)
. (108)
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To bound the statistical error, we define

zall
e,er :=

[
eall>

1 , . . . , eall>
T

]> ∈ RNT , (109a)

Ue,er :=
1

N

[
Xall>

1,N , . . . ,X
all>
T,N

]> ( T∑
τ=1

Ŵer
τ

)−1

∈ RNT×d. (109b)

Looser bound. Under Assumptions 1-2, with Uer, zer defined in Lemma 7, the ERM statistical error is given by

E2
er(θ̂

er
0 ) = ‖θ̂er

0 − θer
0 ‖2Eτ [Wer

τ ] = z>erUerEτ [Wer
τ ]U>erzer

Ier1

+ zall>
e,er Ue,erEτ [Wer

τ ]U>e,erz
all
e,er

I2

+ 2 z>erUerEτ [Wer
τ ]U>e,erz

all
e,er

I3

. (110)

We will then bound terms Ier
1 , I2, I3 respectively. First the bound for the term Ier

1 in (110) is provided in Lemma 7,
which states that with probability at least 1− Td−10, we have

Ier
1 ≤

R2

T

(
λmin(E[Wer

τ ])−1λmax(E[(Wer
τ )2]) +O(

1

N
) + Õ(

1√
d

) + Õ(

√
d

T
)
)

+
(
Õ(

√
d

T
) +

Ler

N

)
M2
(

1 +O(
1

N
) + Õ(

√
d

T
)
)
. (111)

Following similar arguments from Lemma 7, for term I2, first

|zall>
e,er Ue,erEτ [Wer

τ ]U>e,erz
all
e,er − Eθgt

τ ,eτ |Ŵer
τ

[zall>
e,er Ue,erEτ [Wer

τ ]U>e,erz
all
e,er]|

≤Õ
(∥∥Ue,erEτ [Wer

τ ]U>e,er

∥∥
F

)
= Õ

( 1

N

∥∥∥Eτ [Wer
τ ]
( T∑
τ=1

Ŵer
τ

)−2( T∑
τ=1

Ŵer
τ

)∥∥∥
F

)
=Õ

( 1

TN

∥∥∥Eτ [Wer
τ ]
( 1

T

T∑
τ=1

Ŵer
τ

)−2( 1

T

T∑
τ=1

Ŵer
τ

)∥∥∥
F

)
= Õ

( √d
TN

)
(112)

and the expectation is given by

Eθgt
τ ,eτ |Ŵer

τ
[zall>
e,er Ue,erEτ [Wer

τ ]U>e,erz
all
e,er] = tr

(
Ue,erEτ [Wer

τ ]U>e,er

)
=

d

TN

1

d

〈
Eτ [Wer

τ ]
( 1

T

T∑
τ=1

Ŵer
τ

)−2

,
( 1

T

T∑
τ=1

Ŵer
τ

)〉
=

d

TN

1

d
tr
(
Eτ [Wer

τ ]
( 1

T

T∑
τ=1

Ŵer
τ

)−1)
=

d

TN

{1

d
tr
(
Eτ [Wer

τ ]
( 1

T

T∑
τ=1

Ŵer
τ

)−1

− I
)

+
1

d
tr
(
Id

)
=Cer

1

}
(113)

Therefore combining (112) and (113), we have with probability at least 1− Td−10

I2 ≤
d

TN

(
Cer

1 + Õ(

√
d

T
) + Õ(

1√
d

) +O(
1

N
)
)

(114)

=
d

TN

(
1 + Õ(

√
d

T
) + Õ(

1√
d

) +O(
1

N
)
)
. (115)

For term I3, note that Eθgt
τ ,eτ |Ŵer

τ
[z>erUerEτ [Wer

τ ]U>e,erz
all
e,er] = 0. Following similar arguments from (112) to (114)

yields that, with probability at least 1−Td−10, |I3| = |z>erUerEτ [Wer
τ ]U>e,erz

all
e,er| ≤ Õ( R

T
√
N

). Finally, by combining
the bound for I1-I3, with probability at least 1− Td−10, the statistical error of ERM is bounded by

E2
er(θ̂

er
0 ) ≤R

2

T

(
Cer

0 + Õ(

√
d

T
) + Õ(

1√
d

) +O(
1

N
)
)

+
d

TN

(
Cer

1 + Õ(

√
d

T
) + Õ(

1√
d

) +O(
1

N
)
)

+ Õ
( R

T
√
N

)
+
(
Õ(

√
d

T
) + Õ(

√
d

N
) + Õ(

d

N
)
)
M2. (116)
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Tighter bound with Assumption 3. Then under Assumptions 1-3, with Uer, zer defined in Lemma 7, we have

E2
er(θ̂

er
0 ) = wer‖θ̂er

0 − θer
0 ‖22 =wer(z

>
erUerU

>
erzer

Ier1

+ zall>
e,er Ue,erU

>
e,erz

all
e,er

I2

+2 z>erUerU
>
e,erz

all
e,er

I3

). (117)

We will then bound the redefined terms Ier
1 , I2, I3 in (117) respectively. The bound for the term Ier

1 in (117) is
provided in Lemma 7, which states that with probability at least 1− Td−10, the following holds

I1 = z>erUerU
>
erzer ≤

R2

T

(
C̃er

0 + Õ(
1√
d

) + Õ(

√
d

T
)
)
. (118)

For C̃er
0 , since E[Ŵer

τ ] = Qτ , and by Lemma 8, we have

C̃er
0 =

1

d
E
[
tr(Q̂2

τ,N )
](1

d
E
[
tr(Qτ )

])−2

(119)

Following similar arguments from Lemma 7, for term I2, first

|zall>
e,er Ue,erU

>
e,erz

all
e,er − Eθgt

τ ,eτ |Ŵer
τ

[zall>
e,er Ue,erU

>
e,erz

all
e,er]| = Õ

( √d
TN

)
(120)

Eθgt
τ ,eτ |Ŵer

τ
[zall>
e,er Ue,erU

>
e,erz

all
e,er] = tr

(
Ue,erU

>
e,er

)
=

d

TN

1

d

〈( 1

T

T∑
τ=1

Ŵer
τ

)−2

,
( 1

T

T∑
τ=1

Ŵer
τ

)〉
=

d

TN

1

d
tr
(( 1

T

T∑
τ=1

Ŵer
τ

)−1)
=

d

TN

{1

d
tr
(( 1

T

T∑
τ=1

Ŵer
τ

)−1

− E−1[Ŵer
τ ]
)

+
1

d
tr
(
E−1[Ŵer

τ ]
)

=C̃er
1

}
(121)

Therefore combining (120) and (121), we have

I2 = zall>
e,er Ue,erU

>
e,erz

all
e,er ≤

d

TN

(
C̃er

1 + Õ(

√
d

T
) + Õ(

1√
d

)
)
. (122)

For term I3, note that Eθgt
τ ,eτ |Ŵer

τ
[z>erUerU

>
e,erz

all
e,er] = 0. Following a similar argument from (120) to (122), with

probability at least 1− δ, |I3| = |z>erUerU
>
e,erz

all
e,er| ≤ Õ( R

T
√
N

). Finally, by combining (118)-(122), and applying
the weight wer, we conclude that with probability at least 1− Td−10, the statistical error of ERM is bounded by

E2
er(θ̂

er
0 ) =wer‖θ̂er

0 (γ)− θer
0 (γ)‖22 ≤

R2

T

(
werC̃

er
0 + Õ(

√
d

T
) + Õ(

1√
d

)
)

+
d

TN

(
werC̃

er
1 + Õ(

√
d

T
) + Õ(

1√
d

)
)

+ Õ
( R

T
√
N

)
. (123)

Theorem 9 (Asymptotic ERM constant) As d,N →∞, d/N → η, the optimal constant of the ERM method
C̃er

0 satisfies

lim
d,N →∞
d/N → η

C̃er
0 = 1 + η.

Proof: Recall that C̃er
0 = 1

dE
[
tr(Q̂2

τ,N )
](

1
dE
[
tr(Qτ )

])−2

. Based on Assumption 3, E
[
tr(Qτ )

]
= E

[
tr(Id)

]
= d,

And E[(Q̂2
τ,N )] can be derived by

E
[
Q̂2
τ,N

]
= E

[
(

1

N
X>τ,NXτ,N )2

]
= E

[
(

1

N
X>τ,NXτ,N )2

]
= E

[
(

1

N

∑
i

xτ,ix
>
τ,i)

2
]

=
1

N
E
[
(xτ,ix

>
τ,i)

2
]

+
N − 1

N
Id
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where tr(E
[
(xτ,ix

>
τ,i)

2
]
) = E

[
(
∑
j x

2
τ,ij)

2
]

= d(d+ 2).

Therefore

C̃er
0 =

d+N + 1

N
, lim

d,N →∞
d/N → η

C̃er
0 = 1 + η.

�

B.2.3 Statistical error of MAML

From the expressions of θ̂ma
0 and Ŵma

τ , we have

θ̂ma
0 − θma

0 =
( T∑
τ=1

Ŵma
τ

)−1( T∑
τ=1

Ŵma
τ (θgt

τ − θma
0 )
)

+
( T∑
τ=1

Ŵma
τ

)−1( T∑
τ=1

(
I− αQ̂τ,N1

)( 1

N2
Xval>
τ,N2

eval
τ,N2
− α

N1
Q̂τ,N2X

trn>
τ,N1

etrn
τ,N1

))
. (124)

To bound the statistical error of MAML, we define

zval
e1,ma :=

[
eval>

1 , . . . , eval>
T

]> ∈ RN2T , (125a)

U>e1,ma :=
1

N2

( T∑
τ=1

Ŵma
τ,N

)−1[(
I− αQ̂1,N1

)
Xval>

1,N2
, . . . ,

(
I− αQ̂T,N1

)
Xval>
T,N2

]
∈ Rd×N2T (125b)

ztrn
e2,ma :=

[
etrn>

1 , . . . , etrn>
T

]> ∈ RN1T , (126a)

U>e2,ma :=
α

N1

( T∑
τ=1

Ŵma
τ,N

)−1[(
I− αQ̂1,N1

)
Q̂1,N2

Xtrn>
1,N1

, . . . ,
(
I− αQ̂T,N1

)
Q̂T,N2

Xtrn>
T,N1

]
∈ Rd×N1T . (126b)

Looser bound. Under Assumptions 1-2, with Uma, zma defined in Lemma 7, the MAML statistical error is
given by

E2
ma(θ̂ma

0 ) = z>maUmaEτ [Wma
τ ]U>mazma

Ima
1

+ zval>
e1,maUe1,maEτ [Wma

τ ]U>e1,maz
val
e1,ma

I2

+ ztrn>
e2,maUe2,maEτ [Wma

τ ]U>e2,maz
trn
e2,ma

I3

+ 2 z>maUmaEτ [Wma
τ ]U>e1,maz

val
e1,ma

I4

−2 z>maUmaEτ [Wma
τ ]U>e2,maz

trn
e2,ma

I5

−2 zval>
e1,maUe1,maEτ [Wma

τ ]U>e2,maz
trn
e2,ma

I6

.

(127)

We will then bound terms Ima
1 , I2-I6 respectively. First the bound for the term Ima

1 is provided in Lemma 7,
which states that with probability at least 1− Td−10, we have

Ima
1 ≤R

2

T

(
λmin(E[Wma

τ ])−1λmax(E[(Wma
τ )2]) +O(

1

N
) + Õ(

1√
d

) + Õ(

√
d

T
)
)

+
(
Õ(

√
d

T
) +

Lma

N

)
M2
(

1 +O(
1

N
) + Õ(

√
d

T
)
)
. (128)

Following similar arguments as (112), from Lemma 7, for term I2, first

|zval>
e1,maUe1,maEτ [Wma

τ ]U>e1,maz
val
e1,ma

− Eθgt
τ ,eτ |Ŵma

τ,N
[zval>
e1,maUe1,maEτ [Wma

τ ]U>e1,maEτ [Wma
τ ]zval

e1,ma]| = Õ
( √d
TN2

)
(129)
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and the expectation is given by

Eθgt
τ ,eτ |Ŵma

τ,N
[zval>
e1,maUe1,maEτ [Wma

τ ]U>e1,maEτ [Wma
τ ]zval

e1,ma] = tr
(
Ue1,maEτ [Wma

τ ]U>e1,ma

)
=

d

TN2

1

d
tr
(
Eτ [Wma

τ ]
( 1

T

T∑
τ=1

Ŵma
τ,N

)−1
)

=
d

TN2

{1

d
tr
(
Eτ [Wma

τ ]
( 1

T

T∑
τ=1

Ŵma
τ,N

)−1 − E−1[Ŵma
τ,N ]

)
+

1

d
tr
(
Id

)
=Cma

1,1

}
. (130)

Therefore combining (112) and (113), we have

I2 ≤
d

TN2

(
Cma

1,1 + Õ(

√
d

T
) + Õ(

1√
d

)
)
. (131)

Following similar arguments from (129)-(131), I3 satisfies

I3 ≤
d

TN1

(
Cma

1,2 + Õ(

√
d

T
) + Õ(

1√
d

)
)

(132)

with Cma
1,2 defined by

Cma
1,2 :=

1

d

〈
E−1[Wma

τ ],E[α2(I− αQ̂τ,N1)Q̂τ,N2Q̂τ,N1Q̂τ,N2(I− αQ̂τ,N1)]
〉
.

For I4, I5, I6, with probability at least 1− δ

|I4| ≤ Õ(
R

T
√
N

), |I5| ≤ Õ(
R

T
√
N

), |I6| ≤ Õ(

√
d

TN
). (133)

Finally, by combining the bound of I1-I6, we conclude that with probability at least 1− Td−10, the statistical
error of MAML is bounded by

E2
ma(θ̂ma

0 ) ≤ R2

T

(
Cma

0 + Õ(

√
d

T
) + Õ(

1√
d

) +O(
1

N
)
)

+
d

TN2

(
Cma

1,1 + Õ(

√
d

T
) + Õ(

1√
d

)
)

+
d

TN1

(
Cma

1,2 + Õ(

√
d

T
) + Õ(

1√
d

)
)

+ Õ
(R
T

√
1

N1
+
R

T

√
1

N2

)
+ Õ

( 1

T

√
d

N1N2

)
+
(
Õ(

√
d

T
) + Õ(

√
d

N
) + Õ(

d

N
)
)
M2. (134)

Tighter bound with Assumption 3. With Assumptions 1-3 and Uma, zma defined in Lemma 7, we have

E2
ma = wma‖θ̂ma

0 − θma
0 ‖22 = wma(z>maUmaU

>
mazma

I1

+ zval>
e1,maUe1,maU

>
e1,maz

val
e1,ma

I2

+ ztrn>
e2,maUe2,maU

>
e2,maz

trn
e2,ma

I3

+ 2 z>maUmaU
>
e1,maz

val
e1,ma

I4

−2 z>maUmaU
>
e2,maz

trn
e2,ma

I5

−2 zval>
e1,maUe1,maU

>
e2,maz

trn
e2,ma

I6

). (135)

We will then bound these terms I1-I6 in (135) one by one.

To bound term I1 in (135), from Lemma 7, we have with probability at least 1− Td−10

I1 = z>maUmaU
>
mazma ≤

R2

T

(
C̃ma

0 + Õ(
1√
d

) + Õ(

√
d

T
)

)
. (136)
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For C̃ma
0 , by Lemma 9

C̃ma
0 =

1

dN2
E
[
tr2
(

(I− αQ̂τ,N1)2
)

+ (N2 + 1)tr
(

(I− αQ̂τ,N1)4
)][1

d
E
[
tr
(
(I− αQ̂τ,N1)2

)]]−2

. (137)

For I2, from Lemma 3, we have the absolute error around the expectation is given by

|zval>
e1,maUe1,maU

>
e1,maz

val
e1,ma − Eθgt

τ ,eτ |Ŵma
τ,N

[zval>
e1,maUe1,maU

>
e1,maz

val
e1,ma]| = Õ

( √d
TN2

)
(138)

and the expectation is given by

Eθgt
τ ,eτ |Ŵma

τ,N
[zval>
e1,maUe1,maU

>
e1,maz

val
e1,ma] = tr

(
Ue1,maU

>
e1,ma

)
=

d

TN2

1

d
tr
(( 1

T

T∑
τ=1

Ŵma
τ,N

)−1
)

=
d

TN2

{1

d
tr
(( 1

T

T∑
τ=1

Ŵma
τ,N

)−1 − E−1[Ŵma
τ,N ]

)
+

1

d
tr
(
E−1[Ŵma

τ,N ]
)

=C̃ma
1,1

}
. (139)

And by combining (138) and (139) , with probability at least 1− δ, we have

I2 = zval>
e1,maUe1,maU

>
e1,maz

val
e1,ma =

d

TN2

(
C̃ma

1,1 + Õ(

√
d

T
) + Õ(

1√
d

)
)
. (140)

For I3, the absolute error around the expectation is given by

|ztrn>
e2,maUe2,maU

>
e2,maz

trn
e2,ma − Eθgt

τ ,eτ |Ŵma
τ,N

[ztrn>
e2,maUe2,maU

>
e2,maz

trn
e2,ma]| = Õ

( √d
TN1

)
(141)

and the expectation is given by

Eθgt
τ ,eτ |Ŵma

τ,N
[ztrn>
e2,maUe2,maU

>
e2,maz

trn
e2,ma] = tr

(
Ue2,maU

>
e2,ma

)
=

d

TN1

1

d
tr
(( 1

T

T∑
τ=1

Ŵma
τ,N

)−2( 1

T

T∑
τ=1

α2(I− αQ̂τ,N1
)Q̂τ,N2

Q̂τ,N1
Q̂τ,N2

(I− αQ̂τ,N1
)
))

=
d

TN1

{1

d

〈( 1

T

T∑
τ=1

Ŵma
τ,N

)−2

− E−2[Ŵma
τ,N ],

1

T

T∑
τ=1

α2(I− αQ̂τ,N1
)Q̂τ,N2

Q̂τ,N1
Q̂τ,N2

(I− αQ̂τ,N1
)
〉

+
1

d

〈
E−2[Ŵma

τ,N ],
1

T

T∑
τ=1

α2(I− αQ̂τ,N1
)Q̂τ,N2

Q̂τ,N1
Q̂τ,N2

(I− αQ̂τ,N1
)

− E[α2(I− αQ̂τ,N1
)Q̂τ,N2

Q̂τ,N1
Q̂τ,N2

(I− αQ̂τ,N1
)]
〉

+
1

d

〈
E−2[Ŵma

τ,N ],E[α2(I− αQ̂τ,N1
)Q̂τ,N2

Q̂τ,N1
Q̂τ,N2

(I− αQ̂τ,N1
)]
〉

=C̃ma
1,2

}
. (142)

For I3, with probability at least 1− δ

I3 = ztrn>
e2,maUe2,maU

>
e2,maz

trn
e2,ma =

d

TN1

(
C̃ma

2 + Õ(

√
d

T
) + Õ(

1√
d

)
)
. (143)

For I4, I5, I6, with probability at least 1− δ

|I4| ≤ Õ(
R

T
√
N2

), |I5| ≤ Õ(
R

T
√
N1

), |I6| ≤ Õ(

√
d

T
√
N1N2

). (144)
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Finally, applying the weight wma, with probability 1− Td−10 the statistical error of MAML is bounded by

E2
ma(θ̂ma

0 ) = wma‖θ̂ma
0 (γ)− θma

0 (γ)‖22 ≤
R2

T

(
wmaC̃

ma
0 + Õ(

√
d

T
) + Õ(

1√
d

)
)

+
d

TN2

(
wmaC̃

ma
1 + Õ(

√
d

T
) + Õ(

1√
d

)
)

+
d

TN1

(
wmaC̃

ma
2 + Õ(

√
d

T
) + Õ(

1√
d

)
)

+ Õ
(R
T

√
1

N1
+
R

T

√
1

N2

)
+ Õ

( 1

T

√
d

N1N2

)
. (145)

We can obtain C̃ma
2 in the high-dimensional limiting regime as summarized in Theorem 10.

Theorem 10 (Asymptotic MAML constant) As d,N →∞, d/N → η, the optimal constant of the MAML
method, C̃ma

0 , by tuning the step size α ∈ (0, 1/λ̄) and the train-val split ratio s ∈ (0, 1), satisfies

inf
α > 0

s ∈ (0, 1)

lim
d,N →∞
d/N → η

C̃ma
0 = 1 + η

Proof: We first derive a lower bound for inf α > 0
s ∈ (0, 1)

limd,N →∞
d/N → η

by

inf
α > 0

s ∈ (0, 1)

lim
d,N →∞
d/N → η

C̃ma
0

≥ lim
d,N →∞
d/N → η

inf
α > 0

s ∈ (0, 1)

1
dN2

E
[ (∑d

i=1(1− αλ(N1)
i )2

)2

+ (N2 + 1)
(∑d

i=1(1− αλ(N1)
i )4

) ]
1
d2E2

[∑d
i=1(1− αλ(N1)

d )2
]

≥ lim
d,N →∞
d/N → η

inf
α > 0

s ∈ (0, 1)

d+N2 + 1

N2
= 1 + η. (146)

Next we derive the upper bound for inf α > 0
s ∈ (0, 1)

limd,N →∞
d/N → η

C̃ma
0 . As for any PD matrix M ∈ Rd×d, 1

d tr(M2) ≥

( 1
d tr(M))2, then applying this inequality we obtain

lim
d,N →∞
d/N → η

C̃ma
0 ≤ lim

d,N →∞
d/N → η

1
N2

(d+N2 + 1)

1
d2E2

[∑d
i=1(1− αλ(N1)

d )2
] ≤ lim

d,N →∞
d/N → η

1
N2

(d+N2 + 1)

E2
[(

1− α
d

∑d
i=1 λ

(N1)
d

)2]
≤ lim
d,N →∞
d/N → η

1
N2

(d+N2 + 1)

E2
[(

1− αE[ 1
d

∑d
i=1 λ

(N1)
d ]

)2] = lim
d,N →∞
d/N → η

1
N2

(d+N2 + 1)

(1− α)2
. (147)

Therefore

inf
α > 0

s ∈ (0, 1)

lim
d,N →∞
d/N → η

C̃ma
0 ≤ inf

s ∈ (0, 1)
lim

d,N →∞
d/N → η

d+N2 + 1

N2
= 1 + η (148)

Based on (146) and (148) we arrive at

inf
α > 0

s ∈ (0, 1)

lim
d,N →∞
d/N → η

C̃ma
0 = 1 + η (149)

�
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B.2.4 Statistical error of iMAML

Based on θ̂im
0 in (45a), and Ŵim

τ in (45d), we have

θ̂im
0 − θim

0 =
( T∑
τ=1

Ŵim
τ

)−1( T∑
τ=1

Ŵim
τ (θgt

τ − θim
0 )
)

(150)

+
( T∑
τ=1

Ŵim
τ

)−1( T∑
τ=1

γΣθτ

1

N2
Xval>
τ eval

τ − γ−1Ŵim
τ

1

N1
Xtrn>
τ eτ,N

)
.

To bound the iMAML statistical error, define

zval
e1,im :=

[
eval>

1 , . . . , eval>
T

]> ∈ RN2T , (151)

U>e1,im :=
1

N2

(
T∑
τ=1

Ŵim
τ,N

)−1 [
γΣθ1,N1X

val>
1,N2

, . . . , γΣθT ,N1X
val>
T,N2

]
∈ Rd×N2T (152)

where Σθτ ,N1
= ( 1

N1
Xtrn>
τ,N1

Xtrn
τ,N1

+ γI)−1, and

ztrn
e2,im :=

[
etrn>

1 , . . . , etrn>
T

]> ∈ RN1T , (153)

U>e2,im :=
1

N1

(
T∑
τ=1

Ŵim
τ

)−1

[γ−1Ŵim
1,NXtrn>

1 , . . . , γ−1Ŵim
T,NXtrn>

T ] ∈ Rd×N1T . (154)

Looser bound. Following similar arguments as the derivation for MAML in (127)-(134), with probability at
least 1− Td−10, we have

E2
im(θ̂im

0 ) ≤ R2

T

(
λmin(E[Wim

τ ])−1λmax(E[(Wim
τ )2]) +O(

1

N
) + Õ(

1√
d

) + Õ(

√
d

T
)
)

+
(
Õ(

√
d

T
) + Õ(

√
d

N
) + Õ(

d

N
)
)
M2 +

d

TN2

(
C im

1,1 + Õ(

√
d

T
) + Õ(

1√
d

)
)

+
d

TN1

(
C im

1,2 + Õ(

√
d

T
) + Õ(

1√
d

)
)

+ Õ
(R
T

√
1

N1
+
R

T

√
1

N2

)
+ Õ

( 1

T

√
d

N1N2

)
. (155)

with C im
1,1, and C im

1,2 defined by

C im
1,1 := 1,

C im
1,2 :=

1

d

〈
E[Wim

τ ]−1,
1

T

T∑
τ=1

(γ)−2E[Ŵim
τ ]E[Σ−1

θτ
]E[Ŵim

τ ]− E[γ−1(Ŵim
τ )2]

〉
. (156)

Tighter bound with Assumption 3. With Uim, zim defined in Lemma 7, we can rewrite (150) as

θ̂im
0 − θim

0 =U>imzim + U>e1,imzval
e1,im −U>e2,imztrn

e2,im. (157)

Thus the squared error can be computed by

‖θ̂im
0 − θim

0 ‖22 = z>imUimU>imzim

I1

+ zval>
e1,imUe1,imU>e1,imzval

e1,im

I2

+ ztrn>
e2,imUe2,imU>e2,imztrn

e2,im

I3

(158)

+ 2 z>imUimU>e1,imzval
e1,im

I4

−2 z>imUimU>e2,imztrn
e2,im

I5

−2 zval>
e1,imUe1,imU>e2,imztrn

e2,im

I6

.

To bound term I1 in (158), from Lemma 7, we have with probability at least 1− Td−10

I1 = z>imUimU>imzim ≤
R2

T

(
C̃ im

0 + Õ(
1√
d

) + Õ(

√
d

T
)
)
. (159)
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For C̃ im
0 , by Lemma C.2 in (Bai et al., 2021),

C̃ im
0 =

1
dN2

E
[

tr
(
γ2
(
Q̂τ,N1

+ γId
)−2)2

+
(
N2 + 1

)
tr
(
γ4
(
Q̂τ,N1

+ γId
)−4)](

1
dE
[

tr
(
γ2
(
Q̂τ,N1 + γId

)−2)])2 (160)

For I2, first from Lemma 3

∣∣∣zval>
e1,imUe1,imU>e1,imzval

e1,im − Eθgt
τ ,eτ |Ŵim

τ
[zval>
e1,imUe1,imU>e1,imzval

e1,im]
∣∣∣ = Õ

( √d
TN2

)
(161)

Eθgt
τ ,eτ |Ŵim

τ
[zval>
e1,imUe1,imU>e1,imzval

e1,im] =
1

TN2
tr
(( 1

T

T∑
τ=1

Ŵim
τ

)−1)
=

d

TN2

(
1

d
tr
(
E−1[Ŵim

τ ]
)

=C̃im
1,1

+
1

d
tr
(( 1

T

T∑
τ=1

Ŵim
τ

)−1

− E−1[Ŵim
τ ]
)

I9

)
, (162)

and by Lemma 2, with probability at least 1− Td−10

|I9| ≤ Õ(

√
d

T
). (163)

Therefore, combining (161),(162),(163) with probability at least 1− Td−10

I2 ≤
d

TN2

(
C̃ im

1,1 + Õ(

√
d

T
) + Õ(

1√
d

)
)

(164)

C̃ im
1,1 :=

1

d
tr
(
E−1[Ŵim

τ ]
)
. (165)

Similarly, for I3, based on Lemma 3 we have

|ztrn>
e2,imUe2,imU>e2,imztrn

e2,im − Eθgt
τ ,eτ |Ŵim

τ
[ztrn>
e2,imUe2,imU>e2,imztrn

e2,im]| = Õ
( √d
TN1

)
. (166)

And similar to the derivations in ERM and MAML, with Lemma 2, it holds that

Eθgt
τ ,eτ |Ŵim

τ
[ztrn>
e2,imUe2,imU>e2,imztrn

e2,im] =
1

TN1

〈( 1

T

T∑
τ=1

Ŵim
τ

)−2

,
( 1

T

T∑
τ=1

(γ)−2Ŵim
τ

1

N1
Xtrn>
τ Xtrn

τ Ŵim
τ

)〉
=

d

TN1

{
1

d

〈
E[Ŵim

τ ]−2,
1

T

T∑
τ=1

γ−2E[Ŵim
τ ]E[Σ−1

θτ
]E[Ŵim

τ ]− E[γ−1(Ŵim
τ )2]

〉
=C̃im

1,2

+Õ(

√
d

T
)

}
(167)

Combining (166) and (167), with probability at least 1− Td−10, we have

I3 = ztrn>
e2,imUe2,imU>e2,imztrn

e2,im ≤
d

TN1

(
C̃ im

1,2 + Õ(
1√
d

) + Õ(

√
d

T
)
)

(168)

Following a similar argument, for I4, I5, I6, with probability at least 1− δ

|I4| ≤ Õ(
R

T
√
N2

), |I5| ≤ Õ(
R

T
√
N1

), |I6| ≤ Õ(

√
d

T
√
N1N2

). (169)
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Finally, applying the weight wim we have with probability at least 1− Td−10, the statistical error of iMAML is
bounded by

E2
im(θ̂im

0 ) = wim‖θ̂im
0 (γ)− θim

0 (γ)‖22 ≤
R2

T

(
wimC̃

im
0 + Õ(

√
d

T
) + Õ(

1√
d

)
)

+
d

TN2

(
wimC̃

im
1,1 + Õ(

1√
d

) + Õ(

√
d

T
)
)

+
d

TN1

(
wimC̃

im
1,2 + Õ(

1√
d

) + Õ(

√
d

T
)
)

+ Õ
(R
T

√
1

N1
+
R

T

√
1

N2

)
+ Õ

( 1

T

√
d

N1N2

)
. (170)

Theorem 11 (Asymptotic dominating constant of iMAML) (Bai et al., 2021) As d,N →∞, d/N → η,
the optimal constant of the iMAML method, C̃bi

0 , by tuning the regularization γ ∈ (0,∞) and the train-val split
ratio s ∈ (0, 1), satisfies

inf
γ > 0

s ∈ (0, 1)

lim
d,N →∞
d/N → η

C̃ im
0 = 1 + η.

B.2.5 Statistical error of BaMAML

Based on the expressions of θ̂ba
0 and Ŵba

τ , we have

θ̂ba
0 − θba

0 =
( T∑
τ=1

Ŵba
τ,N

)−1( T∑
τ=1

Ŵba
τ,N (θgt

τ − θba
0 )
)

+
( T∑
τ=1

Ŵba
τ,N

)−1( T∑
τ=1

Xall>
τ,N Σ−1

y,Neall
τ,N −Xtrn>

τ,N1
Σ−1
y,N1

etrn
τ,N1

)
(171)

where Σ−1
y,N = (IN + γ−1

b Xτ,NX>τ,N )−1.

To bound the statistical error of BaMAML, define

zall
e,ba :=

[
eall>

1 , . . . , eall>
T

]> ∈ RNT , (172)

U>e1,ba :=
1

N2

( T∑
τ=1

Ŵba
τ,N

)−1[
X>1,NΣ−1

y,N , . . . ,X
>
T,NΣ−1

y,N

]
∈ Rd×NT , (173)

ztrn
e2,ba :=

[
etrn>

1 , . . . , etrn>
T

]> ∈ RN1T , (174)

U>e2,ba :=
1

N2

( T∑
τ=1

Ŵba
τ,N

)−1[
X>1,N1

Σ−1
y,N1

, . . . ,X>T,N1
Σ−1
y,N1

]
∈ Rd×NT . (175)

Looser bound. Following similar arguments as the derivation for ERM in (110)-(116), with probability at least
1− Td−10, we have

E2
ba(θ̂ba

0 ) ≤R
2

T

(
λmin(E[Wba

τ ])−1λmax(E[(Wba
τ )2]) +O(

1

N
) + Õ(

1√
d

) + Õ(

√
d

T
)
)

+
(
Õ(

√
d

T
) + Õ(

√
d

N
) + Õ(

d

N
)
)
M2

+
d

TN

(
Cba

1 +O(
1

N
) + Õ(

√
d

T
) + Õ(

1√
d

)
)

+ Õ
( R

T
√
N

)
. (176)

with Cba
1 defined by

Cba
1 :=

1

d

〈
E[Wba

τ ]−1, (1− s)−1E[(Id + (γs)−1Qτ )−1Qτ (Id + (γs)−1Qτ )−1 − s(Id + γ−1Qτ )−1Qτ (Id + γ−1Qτ )−1]
〉

≤1

d

〈
E[Wba

τ ]−1, (1− s)−1(1− s)E[(Id + (γs)−1Qτ )−1Qτ (Id + γ−1Qτ )−1
〉

= 1. (177)
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Tighter bound with Assumption 3. With Uba, zba defined in Lemma 7

θ̂ba
0 − θba

0 =U>bazba + U>e1,baze1,ba −U>e2,baze2,ba (178)

‖θ̂ba
0 − θba

0 ‖22 = z>baUbaU
>
bazba

I1

+ zall>
e1,baUe1,baU

>
e1,baz

all
e1,ba

I2

+ ztrn>
e2,baUe2,baU

>
e2,baz

trn
e2,ba

I3

(179)

+ 2 z>baUbaU
>
e1,baz

all
e1,ba

I4

−2 z>baUbaU
>
e2,baz

trn
e2,ba

I5

−2 zall>
e1,baUe1,baU

>
e2,baz

trn
e2,ba

I6

.

To bound term I1 in (179), from Lemma 7, we have with probability at least 1− Td−10

I1 = z>baUbaU
>
bazba ≤

R2

T

(
C̃ba

0 + Õ(
1√
d

) + Õ(

√
d

T
)
)
. (180)

To compute C̃ba
0 , by Lemma 8

C̃ba
0 =

1

d
E
[
tr
(

( ˆWba
τ,Na

)2
)]
·
{1

d
E
[
tr
(
Ŵba

τ,N

)]}−2

(181)

For term I2, based on Lemma 3, the absolute error around the expectation is given by

|zall>
e,baUe,baU

>
e,baz

all
e,ba − Eθgt

τ ,eτ |Ŵba
τ

[zall>
e,baUe,baU

>
e,baz

all
e,ba]| = Õ

( √d
TN

)
(182)

where the expectation is given by

Eθgt
τ ,eτ |Ŵba

τ,N
[zall>
e1,baUe1,baU

>
e1,baz

all
e1,ba] = tr

(
Ue1,baU

>
e1,ba

)
=

d

TN

1

d

〈( 1

T

T∑
τ=1

Ŵba
τ,N

)−2

, (1− s)−1
( 1

T

T∑
τ=1

(Id + (γs)−1Q̂τ,N )−1Q̂τ,N (Id + (γs)−1Q̂τ,N )−1
)〉

≤ d

TN

{
Õ(

√
d

T
) +

1

d

〈
E[Ŵba

τ,N ]−2, (1− s)−1E[(Id + (γs)−1Q̂τ,N )−1Q̂τ,N (Id + (γs)−1Q̂τ,N )−1]
〉

=C̃ba
1,1

}
. (183)

Similarly,

Eθgt
τ ,eτ |Ŵba

τ,N
[z>e2,baUe2,baU

>
e2,baze2,ba]

≤ d

TN

{
Õ(

√
d

T
) +

1

d

〈
E[Ŵba

τ,N ]−2, s(1− s)−1E[(Id + γ−1Q̂τ,N1
)−1Q̂τ,N1

(Id + γ−1Q̂τ,N1
)−1]

〉
=C̃ba

1,2

}
. (184)

C̃ba
1 := C̃ba

1,1 − C̃ba
1,2, combining the above derivations with Lemma 2 gives the higher order terms, which leads to

Eθgt
τ ,eτ |Ŵba

τ,N
[zall>
e,baUe,baU

>
e,baz

all
e,ba] ≤ d

TN
(C̃ba

1 + Õ(

√
d

T
)) (185)

Combining (182) and (185), with probability at least 1− Td−10, we have

I2 = zall>
e,baUe,baU

>
e,baz

all
e,ba ≤

d

TN

(
C̃ba

1 + Õ(
1√
d

) + Õ(

√
d

T
)
)

(186)

Following a similar argument, with probability 1− δ, |I3| ≤ Õ( R
T
√
N

).

Finally, applying the weight wba, with probability 1− Td−10, the statistical error of BaMAML is bounded by

E2
ba(θ̂ba

0 ) =wba‖θ̂ba
0 − θba

0 ‖22 ≤
R2

T

(
wbaC̃

ba
0 + Õ(

√
d

T
) + Õ(

1√
d

)
)

+
d

TN

(
wbaC̃

ba
1 + Õ(

√
d

T
) + Õ(

1√
d

)
)

+ Õ
( R

T
√
N

)
. (187)
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Theorem 12 (Asymptotic BaMAML constant) As d,N → ∞, d/N → η, the optimal constant of the
BaMAML method, C̃ba

0 , by tuning the regularization γ ∈ (0,∞) and the train-val split ratio s ∈ (0, 1), satisfies

inf
γ > 0

s ∈ (0, 1)

lim
d,N →∞
d/N → η

C̃ba
0

{
= 1, η ∈ (0, 1],

≤ η, η ∈ (1,∞).

Proof: Adopt the Stieltjes transform to obtain limd,N →∞
d/N → η

C̃ba
0 as a function of γ, s, η, given below. For all

ω1, ω2 > 0, η > 0, define

s(ω1, ω2) := lim
d,N→∞,d/N→η

1

d
E
[

tr
((
ω1Id + ω2Q̂N

)−1
)]

whose closed form solution is given by

s(ω1, ω2) =
η − 1− ω1/ω2 +

√
(ω1/ω2 + 1 + η)2 − 4η

2ηω1

=

√
(ω1/ω2 + 1 + η)2 − 4η − (ω1/ω2 + 1 + η) + 2η

2ηω1
≤ 1

ω1
.

1

dω1
s(ω1, ω2) =

[(
(1/ω2 + (1 + η)/ω1)2 − 4η/ω2

1

)− 1
2 ·(

(1/ω2 + (1 + η)/ω1)(1 + η)− 4η/ω1

)
(−ω−2

1 ) + (1− η)ω−2
1

]
/2η

1

dω1
s(ω1, ω2)

∣∣
ω1=1

=[−
(
(1/ω2 + 1 + η)2 − 4η

)− 1
2
(
(1/ω2 + (1 + η))(1 + η)− 4η

)
+ (1− η)]/2η.

Therefore

lim
d,N→∞,d/N→η

1

d
E
[

tr
((

Id + γ−1Q̂N

)−1
)]

= s(1, γ−1) ≤ 1

where by L’Hospital’s rule,

lim
γ→∞

s(1, γ−1) = lim
γ→∞

√
(γ + 1 + η)2 − 4η − (γ + 1 + η)

2η
+ 1

= lim
γ→∞

√
(1/γ + 1 + η/γ)2 − 4η/γ2 − (1/γ + 1 + η/γ)

2η/γ
+ 1 = 1

lim
γ→0

s(1, γ−1) = lim
γ→0

√
(γ + 1 + η)2 − 4η − (γ + 1− η)

2η

= lim
γ→0

|η − 1| − (1− η)

2η
=

{
0, η ∈ (0, 1];

1− 1
η , η ∈ (1,∞).

By the derivative trick,

lim
d,N→∞,d/N→η

1

d
E
[

tr
((
ω1Id + ω2Q̂N

)−2
)]

=
1

dω1
s(ω1, ω2)

lim
d,N→∞,d/N→η

1

d
E
[

tr
((

Id + γ−1Q̂N

)−2
)]

=[
(
(γ + 1 + η)2 − 4η

)− 1
2
(
(γ + (1 + η))(1 + η)− 4η

)
− (1− η)]/2η

Therefore

lim
γ→∞

lim
d,N→∞,d/N→η

1

d
E
[

tr
((
ω1Id + ω2Q̂N

)−2
)]

=
1 + η − (1− η)

2η
= 1
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lim
γ→0

lim
d,N→∞,d/N→η

1

d
E
[

tr
((
ω1Id + ω2Q̂N

)−2
)]

=
|η − 1| − (1− η)

2η
=

{
0, η ∈ (0, 1];

1− 1
η , η ∈ (1,∞).

For 1
dE
[

tr
((

Id + γ−1Q̂N1

)−1(
Id + (γs)−1Q̂N

)−1
)]

, first limγ→∞(Id + γ−1Q̂N1

)−1
= Id, therefore

lim
γ→∞

1

d
E
[

tr
((

Id + γ−1Q̂N1

)−1(
Id + (γs)−1Q̂N

)−1
)]

= lim
γ→∞

1

d
E
[

tr
((

Id + (γs)−1Q̂N

)−1
)]

lim
γ →∞
sγ → 0

lim
d,N →∞
d/N → η

1

d
E
[
tr
((

Id + γ−1Q̂N1

)−1(
Id + (γs)−1Q̂N

)−1
)]

= lim
γ →∞
sγ → 0

lim
d,N →∞
d/N → η

1

d
E
[
tr
((

Id + (γs)−1Q̂N

)−1
)]

=

{
0, η ∈ (0, 1];

1− 1
η , η ∈ (1,∞).

Then

inf
γ > 0

s ∈ (0, 1)

lim
d,N →∞
d/N → η

C̃ba
0 ≤ lim

γ →∞
sγ → 0

lim
d,N →∞
d/N → η

C̃ba
0 =

{
1, η ∈ (0, 1];

η, η ∈ (1,∞).

Note C̃ba
0 ≥ 1, therefore

inf
γ > 0

s ∈ (0, 1)

lim
d,N →∞
d/N → η

C̃ba
0

{
= 1, η ∈ (0, 1],

≤ η, η ∈ (1,∞).
(188)

�

B.2.6 Comparison of the dominating constants

Based on Theorem 10, 11, 12 we have

inf
α ∈ (0, 1/λ̄)
s ∈ (0, 1)

lim
d,N →∞
d/N → η

C̃ma
0 = inf

γ > 0
s ∈ (0, 1)

lim
d,N →∞
d/N → η

C̃bi
0 ≥ inf

γ > 0
s ∈ (0, 1)

lim
d,N →∞
d/N → η

C̃ba
0 . (189)

Considering the weighted version, recall that wma = (1 − α)2 > 0 wim = (1 + γ−1)−2, limγ→0 wim = 0,
wba = (1 + γ−1)−1(1 + (γs)−1)−1, limγ→0 wba = 0. Therefore infγ>0 wim = infγ>0 wba = 0 ≤ infα∈(0,1/λ̄) wma,
thus the comparison of dominating coefficients in the statistical errors of different meta learning methods can be
summarized below

inf
γ > 0

s ∈ (0, 1)

lim
d,N →∞
d/N → η

wbaC̃
ba
0 ≤ inf

α ∈ (0, 1/λ̄)
s ∈ (0, 1)

lim
d,N →∞
d/N → η

wmaC̃
ma
0 (190)

inf
γ > 0

s ∈ (0, 1)

lim
d,N →∞
d/N → η

wimC̃
bi
0 ≤ inf

α ∈ (0, 1/λ̄)
s ∈ (0, 1)

lim
d,N →∞
d/N → η

wmaC̃
ma
0 . (191)

Combining (190) (191) with the comparison in optimal population risk, we can conclude that, under Assumptions 1-
3, when γ is sufficiently small, it is guaranteed that iMAML and BaMAML will have smaller meta-test risk than
MAML. Furthermore, BaMAML has strictly smaller dominating constant in statistical error compared to iMAML
under optimal choice of γ and s, as d,N →∞, d/N → η > 0.

C Additional experiments and details

C.1 Experimental details

All our experiments are conducted on a workstation with an Intel i9-9960x CPU with 128GB memory and four
NVIDIA RTX 2080Ti GPUs each with 11GB memory. Our experiments for linear synthetic data are conducted
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Table 2: Comparison of different MAML on image classification (testing loss (NLL) with std., code modified
from (Nguyen et al., 2020))

miniImageNet
Method 1-shot 5-way 5-shot 5-way
MAML 1.41± 0.04 1.18± 0.06
BaMAML 1.38± 0.05 1.15± 0.05

TieredImageNet
Method 1-shot 5-way 5-shot 5-way
MAML 1.36± 0.08 0.99± 0.02
BaMAML 1.05± 0.06 0.76± 0.01

on MATLAB R2021a with CPU only. And our experiments for sinwave regression and real classification are
conducted on Python 3.7, PyTorch 1.9.1 with one GPU.

For sinwave regression and real image classification, Adam optimizer is used. The hyperparameters of all
experiments are chosen based on grid search. In sinwave regression experiments, the learning rate for ERM
is initially 0.0001, while the learning rates for both base-learner and meta-learner in MAML and BaMAML
are initially 0.001, except that in the experiments with N = 1000, T = 100, s = 0.5, the initial learning rate of
BaMAML for both base-learner and meta-learner are initially 0.0001. The learning rate decay is set to be 0.98
for all methods. The number of model parameter samples used for BaMAML is 10. In real image classification
experiments, the CNN architecture used is ResNet18. The initial learning rate of MAML and BaMAML are 0.001.

C.2 Real datasets

Experiment settings. We test the performance on the 5-way miniImageNet classification (Vinyals et al., 2016)
and TieredImageNet. MiniImageNet consists 100 classes of images, each with 600 examples. The classes are split
into 64, 12, and 24 for train, validation and test, respectively, following (Finn et al., 2017). Note that, since in
this setting ERM without adaptation to new classes does not have practical meaning, we do not compare with
ERM in this setting.

Results. The meta-test loss under different settings are provided in Table 2, where BaMAML shows comparable
testing loss on miniImageNet and higher testing loss on the TieredImageNet dataset.
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